Skip to main content
Log in

Alternating electric field application induced non-contact and enzyme-free cell detachment

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Low intensity (< 2 Vpp/cm (peak to peak voltage/cm)), high frequency (10–30 MHz), and 10 min alternating electric fields (sine wave with no DC component) induce non-contact and enzyme-free cell detachment of anchorage-dependent cells directly from commercially available cell culture flasks and stack plates. 0.25 Vpp/cm, 20 MHz alternating electric field for 10 min at room temperature (RT) induced maximum detachment and separated 99.5 ± 0.1% (mean ± SEM, n = 6) of CHO-K1 and 99.8 ± 0.2% of BALB/3T3 cells from the culture flasks. Both vertical and lateral alternating electric field applications for 10 min at RT detach the CHO-K1 cells from 25 cm2 culture flasks. The alternating electric field application induced cell detachment is almost noncytotoxic, and over 90% of the detached cells remained alive. The alternating electric field applied CHO-K1 cells for 90 min showed little or no lag phase and immediately enter exponential phase in cell growth. Combination of the 20 MHz alternating electric field and enzymatic treatment for 4 min at 37 °C showed synergetic effect and quickly detached human induced pluripotent stem cells from a laminin-coated culture flask compared with the only enzymatic treatment. These results indicate that the rapid cell detachment with both the electric field application and the enzymatic treatment could be applied to subcultures of cells that are susceptible to prolonged enzymatic digestion damage for mass culture of sustainable clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Chen AK-L, Reuveny S, Oh SKW (2013) Application of human mesenchymal and pluripotent stem cell microcarrier cultures in cellular therapy: achievements and future direction. Biotech Adv 31:1032–1046

    Article  CAS  Google Scholar 

  • Cheng Z, Cheng K, Weng W (2017) SiO2/TiO2 nanocomposite films on polystyrene for light-induced cell detachment application. ACS Appl Mater Interfaces 9:2130–2137

    Article  CAS  PubMed  Google Scholar 

  • Elson E (1995) Biologic effects of radiofrequency and microwave fields: in vivo and in vitro experimental results. In: Bronzino JD (ed) The biomedical engineering handbook. CRC Press Inc, Boca Raton, pp 1417–1423

    Google Scholar 

  • Goh TK-P, Zhang Z-Y, Chen AK-L, Reuveny S, Choolan M, Chan JKY, Oh SK-W (2013) Microcarrier culture for efficient expansion and osteogenic differentiation of human fetal mesenchymal stem cells. Biores Open Access 2:84–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guedes JC, Park J-H, Lakhkar NJ, Kim H-W, Knowles JC, Wall IB (2012) TiO2-doped phosphate glass microcarriers: a stable bioactive substrate for expansion of adherent mammalian cells. J Biomater Appl 28:2–11

    Google Scholar 

  • Heathman TRJ, Glyn VAM, Picken A, Rafiq QA, Coopman K, Nienow AW, Kara B, Hewitt CJ (2015) Expansion, harvest and cryopreservation of human mesenchymal stem cells in a serum-free microcarrier process. Biotech Bioeng 112:1696–1706

    Article  CAS  Google Scholar 

  • Hendrick V, Muniz E, Geuskens G, Wérenne J (2001) Adhesion, growth and detachment of cells on modified polystyrene surface. Cytotechnology 36:49–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hippel RV (1954) Dielectric materials and applications. MIT Press, Cambridge, p 438

    Google Scholar 

  • Hirai H, Umegaki R, Kino-Oka M, Taya M (2002) Characterization of cellular motions through direct observation of individual cells at early stage in anchorage-dependent culture. J Biosci Bioeng 94:351–356

    Article  CAS  PubMed  Google Scholar 

  • Hirano K, Konagaya S, Turner A, Noda Y, Kitamura S, Kotera H, Iwata H (2017) Closed-channel culture system for efficient and reproducible differentiation of human pluripotent stem cells into islet cells. Biochem Biophys Res Commun 487:344–350

    Article  CAS  PubMed  Google Scholar 

  • Hong Y, Yu M, Weng W, Cheng K, Wang H, Lin J (2013) Light-induced cell detachment for cell sheet technology. Biomaterials 34:11–18

    Article  CAS  PubMed  Google Scholar 

  • Kakegawa T, Mochizuki N, Sadr N, Suzuki H, Fukuda J (2013) Cell-adhesive and cell-repulsive zwitterionic oligopeptides for micropatterning and rapid electrochemical detachment of cells. Tisssue Eng A 19:290–298

    Article  CAS  Google Scholar 

  • Kirson ED, Gurvich Z, Schneiderman R, Dekel E, Itzhaki A, Wasserman Y, Schatzberger R, Palti Y (2004) Disruption of cancer cell replication by alternating electric fields. Cancer Res 64:3288–3295

    Article  CAS  PubMed  Google Scholar 

  • Koyama S (2011) Electrically modulated attachment and detachment of animal cells cultured on an optically transparent patterning electrode. J Biosci Bioeng 111:578–583. (Corrigendum in: Koyama S (2012) J Biosci Bioeng 114:240)

  • Kurashina Y, Hirano M, Imashiro C, Totani K, Komotori J, Takemura K (2017) Enzyme-free cell detachment mediated by resonance vibration with temperature modulation. Biotech Bioeng 114:2279–2288

    Article  CAS  Google Scholar 

  • Merten O-W (2015) Advances in cell culture: anchorage dependence. Philos Trans R Soc B 370:20140040

    Article  CAS  Google Scholar 

  • Nakagawa M, Taniguchi Y, Senda S, Takizawa N, Ichisaka T, Asano K, Morizane A, Doi D, Takahashi J, Nishizawa M, Yoshida Y, Toyoda T, Osafune K, Sekiguchi K, Yamanaka S (2014) A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. Sci Rep 4:3594

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakajima K, Honda S, Nakamura Y, López-Redondo F, Kohsaka S, Yamato M, Kikuchi A, Okano T (2001) Intact microglia are cultured and non-invasively harvested without pathological activation using a novel cultured cell recovery method. Biomaterials 22:1213–1223

    Article  CAS  PubMed  Google Scholar 

  • Nienow AW, Rafiq QA, Coopman K, Hewitt CJ (2014) A potentially scalable method for the harvesting of hMSCs from microcarriers. Biochem Eng J 85:79–88

    Article  CAS  Google Scholar 

  • Potapova IA, Brink PR, Cohen IS, Doronin SV (2008) Culturing of human mesenchymal stem cells as three-dimensional aggregates induces functional expression of CXCR4 that regulates adhesion to endothelial cells. J Biol Chem 283:13100–13107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang HS, Jeon O, Bhang SH, Lee S-H, Kim B-S (2010) Suspension culture of mammalian cells using thermosensitive microcarrier that allows cell detachment without proteolytic enzyme treatment. Cell Transpl 19:1123–1132

    Article  Google Scholar 

  • Yoon SH, Mofrad MR (2011) Cell adhesion and detachment on gold surfaces modified with a thiol-functionalized RGD peptide. Biomaterials 32:7286–7296

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumihiro Koyama.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koyama, S., Wada, M., Tamura, Y. et al. Alternating electric field application induced non-contact and enzyme-free cell detachment. Cytotechnology 71, 583–597 (2019). https://doi.org/10.1007/s10616-019-00307-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-019-00307-4

Keywords

Navigation