Skip to main content
Log in

Proliferation control strategies to improve productivity and survival during CHO based production culture

A summary of recent methods employed and the effects of proliferation control in product secreting CHO cell lines

  • NICB special issue
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Chinese Hamster Ovary cells are the primary system for the production of recombinant proteins for therapeutic use. Protein productivity is directly proportional to viable biomass, viability and culture longevity of the producer cells and a number of approaches have been taken to optimise these parameters. Cell cycle arrest, particularly in G1 phase, typically using reduced temperature cultivation and nutritional control have been used to enhance productivity in production cultures by prolonging the production phase, but the mechanism by which these approaches work is still not fully understood. In this article, we analyse the public literature on proliferation control approaches as they apply to production cell lines with particular reference to what is known about the mechanisms behind each approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alete DE, Racher AJ, Birch JR, Stansfield SH, James DC, Smales CM (2005) Proteomic analysis of enriched microsomal fractions from GS-NS0 murine myeloma cells with varying secreted recombinant monoclonal antibody productivities. Proteomics 5:4689–4704

    CAS  Google Scholar 

  • Al-Fageeh MB, Marchant RJ, Carden MJ, Smales CM (2006) The cold-shock response in cultured mammalian cells: harnessing the response for the improvement of recombinant protein production. Biotechnol Bioeng 93:829–835

    CAS  Google Scholar 

  • Al-Rubeai M, Emery AN (1990) Mechanisms and kinetics of monoclonal antibody synthesis and secretion in synchronous and asynchronous hybridoma cell cultures. J Biotechnol 16:67–85

    CAS  Google Scholar 

  • Al-Rubeai M, Singh RP (1998) Apoptosis in cell culture. Curr Opin Biotechnol 9:152–156

    CAS  Google Scholar 

  • Al-Rubeai M, Emery AN, Chalder S, Jan D (1992) Specific monoclonal antibody productivity and the cell cycle-comparisons of batch, continuous and perfusion cultures. Cytotechnology 9:85–97

    CAS  Google Scholar 

  • Altamirano C, Paredes C, Cairo JJ, Godia F (2000) Improvement of CHO cell culture medium formulation: simultaneous substitution of glucose and glutamine. Biotechnol Prog 16:69–75

    CAS  Google Scholar 

  • Altamirano C, Illanes A, Casablancas A, Gamez X, Cairo JJ, Godia C (2001a) Analysis of CHO cells metabolic redistribution in a glutamate-based defined medium in continuous culture. Biotechnol Prog 17:1032–1041

    CAS  Google Scholar 

  • Altamirano C, Cairó JJ, Gòdia F (2001b) Decoupling cell growth and product formation in Chinese hamster ovary cells through metabolic control. Biotechnol Bioeng 76:351–360

    CAS  Google Scholar 

  • Altamirano C, Paredes C, Illanes A, Cairo JJ, Godia F (2004) Strategies for fed-batch cultivation of t-PA producing CHO cells: substitution of glucose and glutamine and rational design of culture medium. J Biotechnol 110:171–179

    CAS  Google Scholar 

  • Altamirano C, Illanes A, Becerra S, Cairo JJ, Godia F (2006) Considerations on the lactate consumption by CHO cells in the presence of galactose. J Biotechnol 125:547–556

    CAS  Google Scholar 

  • Andersen DC, Bridges T, Gawlitzek M, Hoy C (2000) Multiple cell culture factors can affect the glycosylation of Asn-184 in CHO-produced tissue-type plasminogen activator. Biotechnol Bioeng 70:25–31

    CAS  Google Scholar 

  • Baghdoyan S, Dubreuil P, Eberle F, Gomez S (2000) Capture of cytokine-responsive genes (NACA and RBM3) using a gene trap approach. Blood 95:3750–3757

    CAS  Google Scholar 

  • Baik JY, Lee MS, An SR, Yoon SK, Joo EJ, Kim YH, Park HW, Lee GM (2006) Initial transcriptome and proteome analyses of low culture temperature-induced expression in CHO cells producing erythropoietin. Biotechnol Bioeng 93:361–371

    CAS  Google Scholar 

  • Baldi A, Battista T, De Luca A, Santini D, Rossiello L, Baldi F, Natali PG, Lombardi D, Picardo M, Felsani A, Paggi MG (2003) Identification of genes down-regulated during melanoma progression: a cDNA array study. Exp Dermatol 12:213–218

    CAS  Google Scholar 

  • Bi JX, Shuttleworth J, Al-Rubeai M (2004) Uncoupling of cell growth and proliferation results in enhancement of productivity in p21CIP1-arrested CHO cells. Biotechnol Bioeng 85:741–749

    CAS  Google Scholar 

  • Bollati-Fogolin M, Forno G, Nimtz M, Conradt HS, Etcheverrigaray M, Kratje R (2005) Temperature reduction in cultures of hGM-CSF-expressing CHO cells: effect on productivity and product quality. Biotechnol Prog 21:17–21

    CAS  Google Scholar 

  • Buckbinder L, Talbott R, Velasco-Miguel S, Takenaka I, Faha B, Seizinger BR, Kley N (1995) Nduction of the growth inhibitor IGF-binding protein 3 by p53. Nature 377:646–649

    CAS  Google Scholar 

  • Buckley AR, Leff MA, Buckley DJ, Magnuson NS, de Jong G, Gout PW (1996) Alteration in pim-1 and c-myc expression associated with sodium butyrate-induced growth factor dependency in autonomous rat Nb2 lymphoma cells. Cell Growth Differ 7:1713–1721

    CAS  Google Scholar 

  • Carvalhal AV, Marcelino I, Carrondo MJT (2003) Metabolic changes during cell growth inhibition by p27 overexpression. Appl Microbiol Biotechnol 63:164–173

    CAS  Google Scholar 

  • Chang KH, Kim KS, Kim JH (1999) N-Acetylcysteine increases the biosynthesis of recombinant EPO in apoptotic Chinese hamster ovary cells. Free Rad Res 30:85–91

    CAS  Google Scholar 

  • Chappell SA, Mauro VP (2003) The internal ribosome entry site (IRES) contained within the RNA-binding motif protein 3 (Rbm3) mRNA is composed of functionally distinct elements. J Biol Chem 278:33793–33800

    CAS  Google Scholar 

  • Chappell SA, Owens GC, Mauro VP (2001) A 5’ leader of Rbm3, a cold stress-induced mRNA, mediates internal initiation of translation with increased efficiency under conditions of mild hypothermia. J Biol Chem 276:36917–36922

    CAS  Google Scholar 

  • Cherlet M, Marc A (2000) Stimulation of monoclonal antibody production of hybridoma cells by butyrate: evaluation of a feeding strategy and characterization of cell behavior. Cytotechnology 32:17–29

    CAS  Google Scholar 

  • Chuppa S, Tsai YS, Yoon S, Shackleford S, Rozales C, Bhat R, Tsay G, Matanguihan C, Konstantinov K, Naveh D (1997) Fermentor temperature as a tool for control of high density perfusion cultures of mammalian cells. Biotechnol Bioeng 55:328–338

    CAS  Google Scholar 

  • Clark KJ, Chaplin FW, Harcum SW (2004) Temperature effects on product-quality-related enzymes in batch CHO cell cultures producing recombinant tPA. Biotechnol Prog 20:1888–1892

    CAS  Google Scholar 

  • Danno S, Itoh K, Matsuda T, Fujita J (2000) Decreased expression of mouse Rbm3, a cold-shock protein, in Sertoli cells of cryptorchid testis. Am J Pathol 156:1685–1692

    CAS  Google Scholar 

  • Davis R, Schooley K, Rasmussen B, Thomas J, Reddy P (2000) Effect of PDI overexpression on recombinant protein secretion in CHO cells. Biotechnol Prog 16:736–743

    CAS  Google Scholar 

  • Derry JM, Kerns JA, Francke U (1995) RBM3, a novel human gene Xp11.23 with putative RNA-binding domain. Hum Mol Genet 4:2307–2311

    CAS  Google Scholar 

  • Dresios J, Aschrafi A, Owens GC, Vanderklish PW, Edelman GM, Mauro VP (2005) Cold stress-induced protein Rbm3 binds 60S ribosomal subunits, alters microRNA levels, and enhances global protein synthesis. Proc Natl Acad Sci USA 102:1865–1870

    CAS  Google Scholar 

  • El-Deiry W, Tokino T, Velculescu V, Levy D, Parsons R, Trent J, Lin D, Mercer W, Kinzler K, Vogelstein B (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825

    CAS  Google Scholar 

  • El-Deiry WS, Harper JW, O’Connor PM, Velculescu VE, Canman CE, Jackman J, Pietenpol JA, Burrell M, Hill DE, Wang Y, Wiman KG, Mercer WE, Kastan MB, Kohn KW, Elledge SJ, Kinzler KW, Vogelstein B (1994) WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 54:1169–1174

    CAS  Google Scholar 

  • Fiore M, Degrassi F (1999) Dimethyl sulfoxide restores contact inhibition-induced growth arrest and inhibits cell density-dependent apoptosis in hamster cells. Exp Cell Res 251:102–110

    CAS  Google Scholar 

  • Fiore M, Zanier R, Degrassi F (2002) Reversible G1 arrest by dimethyl sulfoxide as a new method to synchronize Chinese hamster cells. Mutagenesis 17:419–424

    CAS  Google Scholar 

  • Fogolin MB, Wagner R, Etcheverrigaray M, Kratje R (2004) Impact of temperature reduction and expression of yeast pyruvate carboxylase on hGM-CSF-producing CHO cells. J Biotechnol 109:179–191

    CAS  Google Scholar 

  • Fox SR, Patel UA, Yap MG, Wang DI (2004) Maximizing interferon-gamma production by Chinese hamster ovary cells through temperature shift optimization: experimental and modeling. Biotechnol Bioeng 85:177–184

    CAS  Google Scholar 

  • Fox SR, Tan HK, Tan MC, Wong SC, Yap MG, Wang DI (2005) A detailed understanding of the enhanced hypothermic productivity of interferon-gamma by Chinese-hamster ovary cells. Biotechnol Appl Biochem 41:255–264

    CAS  Google Scholar 

  • Fujita J (1999) Cold shock response in mammalian cells. J Mol Microbiol Biotechnol 1:243–255

    CAS  Google Scholar 

  • Furukawa K, Ohsuye K (1998) Effect of culture temperature on a recombinant CHO cell line producing a C-terminal α-amidating enzyme. Cytotechnology 26:153–164

    CAS  Google Scholar 

  • Furukawa K, Ohsuye K (1999) Enhancement of productivity of recombinant α-amidating enzyme by low temperature culture. Cytotechnology 31:85–94

    CAS  Google Scholar 

  • Fussenegger M, Mazur X, Bailey JE (1997) A novel cytostatic process enhances the productivity of Chinese hamster ovary cells. Biotechnol Bioeng 55:927–939

    CAS  Google Scholar 

  • Fussenegger M, Schlatter S, Datwyler D, Mazur X, Bailey JE (1998) Controlled proliferation by multigene metabolic engineering enhances the productivity of Chinese hamster ovary cells. Nat Biotechnol 16:468–472

    CAS  Google Scholar 

  • Fussenegger M, Fassnacht D, Schwartz R, Zanghi JA, Graf M, Bailey JE, Portner R (2000) Regulated overexpression of the survival factor bcl-2 in CHO cells increases viable cell density in batch culture and decreases DNA release in extended fixed-bed cultivation. Cytotechnology 32:45–61

    CAS  Google Scholar 

  • Garcia-Bermejo L, Vilaboa NE, Perez C, Galan A, DeBlas E, Aller P (1997) Modulation of heat-shock protein 70 (HSP70) gene expression by sodium butyrate in U-937 promonocytic cells: relationships with differentiation and apoptosis. Exp Cell Res 236:268–274

    CAS  Google Scholar 

  • Grana X, Reddy EP (1995) Cell cycle control in mammalian cells: role of cyclins, cyclin-dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene 11:211–219

    CAS  Google Scholar 

  • Hakura A, Mochida H, Yamatsu K (1993) Dimethyl sulfoxide (DMSO) is mutagenic for bacterial mutagenicity tester strains. Mutat Res 303:127–133

    CAS  Google Scholar 

  • Hayduk EJ, Choe LH, Lee KH (2004) A two-dimensional electrophoresis map of Chinese hamster ovary cell proteins based on fluorescence staining. Electrophoresis 25:2545–2556

    CAS  Google Scholar 

  • Hayles J, Fisher D, Woollard A, Nurse P (1994) Temporal order of S phase and mitosis in fission yeast is determined by the stat of the p34cdc2 mitotic B cyclin complex. Cell 78:813–822

    CAS  Google Scholar 

  • Hendrick V, Winnepenninckx P, Abdelkafi CV, Andeputte O, Cherlet M, Marique T, Renemann G, Loa A, Kretzmer G, Werenne J (2001) Increased productivity of recombinant tissular plasminogen activator (t-PA) by butyrate and shift of temperature: a cell cycle phases analysis. Cytotechnology 36:71–83

    CAS  Google Scholar 

  • Hengst L, Dulic V, Slingerland JM, Lees E, Reed SI (1994) A cell cycle-regulated inhibitor of cyclin-dependent kinases. Proc Natl Acad Sci USA 91:5291–5295

    CAS  Google Scholar 

  • Holland DB, Roberts SG, Wood EJ, Cunliffe WJ (1993) Cold shock induces the synthesis of stress proteins in human keratinocytes. J Invest Dermatol 101:196–199

    CAS  Google Scholar 

  • Huang DC, O’Reilly LA, Strasser A, Cory S (1997) The anti-apoptosis function of Bcl-2 can be genetically separated from its inhibitory effect on cell cycle entry. EMBO J 16:4628–4638

    CAS  Google Scholar 

  • Hunt L, Batard P, Jordan M, Wurm FM (2002) Fluorescent proteins in animal cells for process development: optimization of sodium butyrate treatment as an example. Biotechnol Bioeng 77:528–537

    CAS  Google Scholar 

  • Ibarra N, Watanabe S, Bi J-X, Shuttleworth J, Al-Rubeai M (2003) Modulation of cell cycle for enhancement of antibody productivity in perfusion culture of NS0 cells. Biotech Prog 19:224–228

    CAS  Google Scholar 

  • Jones PG, Inouye M (1994) The cold-shock response hot topic. Mol Microbiol 11:811–818

    CAS  Google Scholar 

  • Jorjani P, Ozturk SS (1999) Effects of cell density and temperature on oxygen consumption rate for different mammalian cell lines. Biotechnol Bioeng 64:349–356

    CAS  Google Scholar 

  • Kaufmann H, Mazur X, Fussenegger M, Bailey JE (1999) Influence of low temperature on productivity, proteome and protein phosphorylation of CHO cells. Biotechnol Bioeng 63:573–582

    CAS  Google Scholar 

  • Kaufmann H, Mazur X, Marone R, Bailey J, Fussenegger M (2001) Comparative analysis of two controlled proliferation strategies regarding product quality, influence on tetracycline–regulated gene expression and productivity. Biotechnol Bioeng 72:592–602

    CAS  Google Scholar 

  • Kim NS, Lee GM (2001) Overexpression of bcl-2 inhibits sodium butyrate-induced apoptosis in Chinese hamster ovary cells resulting in enhanced humanized antibody production. Biotechnol Bioeng 71:184–193

    CAS  Google Scholar 

  • Kim NS, Lee GM (2002) Inhibition of sodium butyrate-induced apoptosis in recombinant Chinese hamster ovary cells by constitutively expressing antisense RNA of caspase-3. Biotechnol Bioeng 78:217–228

    CAS  Google Scholar 

  • Kita H, Carmichael J, Swartz J, Muro S, Wyttenbach A, Matsubara K, Rubinsztein DC, Kato K (2002) Modulation of polyglutamine-induced cell death by genes identified by expression profiling. Hum Mol Genet 11:2279–2287

    CAS  Google Scholar 

  • Ko LJ, Prives C (1996) p53: puzzle and paradigm. Genes Dev 10:1054–1072

    CAS  Google Scholar 

  • Kondo K, Kowalski LR, Inouye M (1992) Cold shock induction of yeast NSR1 protein and its role in pre-rRNA processing. J Biol Chem 267:16259–16265

    CAS  Google Scholar 

  • Kurano N, Leist C, Messi F, Kurano S, Fiechter A (1990) Growth behavior of chinese hamster ovary cells in a compact loop bioreactor. 2. Effects of medium components and waste products. J Biotechnol 15:113–128

    CAS  Google Scholar 

  • Lee SK, Lee GM (2003) Development of apoptosis-resistant dihydrofolate reductase-deficient Chinese hamster ovary cell line. Biotechnol Bioeng 82:872–876

    CAS  Google Scholar 

  • Li CJ, Elsasser TH (2005) Butyrate-induced apoptosis and cell cycle arrest in bovine kidney epithelial cells: involvement of caspase and proteasome pathways. J Anim Sci 83:89–97

    CAS  Google Scholar 

  • Liu CH, Chu IM, Hwang SM (2001) Pentanoic acid, a novel protein synthesis stimulant for chinese hamster ovary (CHO) cells. J Biosci Bioeng 91:71–75

    CAS  Google Scholar 

  • Lloyd DR, Holmes P, Jackson LP, Emery AN, Al-Rubeai M (2000) Relationship between cell size, cell cycle and specific recombinant protein productivity. Cytotechnology 34:59–70

    CAS  Google Scholar 

  • Mazur X, Fussenegger M, Renner WA, Bailey JE (1998) Higher productivity of growth-arrested Chinese hamster ovary cells expressing the cyclin-dependent kinase inhibitor p27. Biotechnol Prog 14:705–713

    CAS  Google Scholar 

  • Mazur X, Eppenberger HM, Bailey JE, Fussenegger M (1999) A novel autoregulated proliferation-controlled production process using recombinant CHO cells. Biotechnol Bioeng 65:144–150

    CAS  Google Scholar 

  • Meents H, Enenkel B, Eppenberger HM, Werner RG, Fussenegger M (2002) Impact of coexpression and coamplification of sICAM and antiapoptosis determinants bcl-2/bcl-x(L) on productivity, cell survival, and mitochondria number in CHO-DG44 grown in suspension and serum-free media. Biotechnol Bioeng 80:706–716

    CAS  Google Scholar 

  • Monneret C (2005) Histone deacetylase inhibitors. Eur J Med Chem 40:1–13

    CAS  Google Scholar 

  • Moore A, Mercer J, Dutina G, Donahue CJ, Bauer KD, Mather JP, Etcheverry T, Ryll T (1997) Effects of temperature shift on cell cycle, apoptosis and nucleotide pools in CHO cell batch cultures. Cytotechnology 23:47–54

    CAS  Google Scholar 

  • Nishiyama H, Higashitsuji H, Yokoi H, Itoh K, Danno S, Matsuda T, Fujita J (1997a) Cloning and characterization of human CIRP (cold-inducible RNA-binding protein) cDNA and chromosomal assignment of the gene. Gene 204:115–120

    CAS  Google Scholar 

  • Nishiyama H, Itoh K, Kaneko Y, Kishishita M, Yoshida O, Fujita J (1997b) A glycine-rich RNA-binding protein mediating cold-inducible suppression of mammalian cell growth. J Cell Biol 137:899–908

    CAS  Google Scholar 

  • Nurse P (1994) Ordering S phase and M phase in the cell cycle. Cell 79:547–550

    CAS  Google Scholar 

  • O’Reilly LA, Huang DCS, Strasser A (1996) The cell death inhibitor bcl-2 and its homologues influence control of cell cycle entry. EMBO J 15:6979–6990

    CAS  Google Scholar 

  • Ohsaka Y, Ohgiya S, Hoshino T, Ishizaki K (2002) Phosphorylation of c-Jun N-terminal kinase in human hepatoblastoma cells is transiently increased by cold exposure and further enhanced by subsequent warm incubation of the cells. Cell Physiol Biochem 12:111–118

    CAS  Google Scholar 

  • Ostermeier M, De Sutter K, Georgiou G (1996) Eukaryotic protein disulfide isomerase complements Escherichia coli dsbA mutants and increases the yield of a heterologous secreted protein with disulfide bonds. J Biol Chem 271:10616–10622

    CAS  Google Scholar 

  • Ozturk S, Riley M, Palsson B (1992) Effects of ammonia and lactate on hybridoma growth, metabolism and antibody production. Biotechnol Bioeng 39:418–431

    CAS  Google Scholar 

  • Palermo DP, DeGruf ME, Marotti KR, Rehberg E, Post LE (1992) Production of analytical quantities of recombinant proteins in Chinese hamster ovary cells using sodium butyrate to elevate gene expression. J Biotechnol 19:35–48

    Google Scholar 

  • Phadtare S, Alsina J, Inouye M (1999) Cold-shock response and cold-shock proteins. Curr Opin Microbiol 2:175–180

    CAS  Google Scholar 

  • Pikaart MJ, Recillas-Targa F, Felsenfeld G (1998) Loss of transcriptional activity of a transgene is accompanied by DNA methylation and histone deacetylation and is prevented by insulators. Genes Dev 12:2852–2862

    CAS  Google Scholar 

  • Ponzio G, Loubat A, Rochet N, Turchi L, Rezzonico R, Far DF, Dulic V, Rossi B (1998) Early G(1) growth arrest of hybridoma B cells by DMSO involves cyclin D2 inhibition and p21([CIP1]) induction. Oncogene 17:1159–1166

    CAS  Google Scholar 

  • Puck TT, Cieciura SJ, Robinson A (1958) Genetics of somatic mammalian cells. J Mol Med 108:945–955

    CAS  Google Scholar 

  • Reitzer L, Wice B, Kennell D (1979) Evidence that glutamine, not sugar, is the major energy source for cultured hela cells. J Biol Chem 254:2669–2676

    CAS  Google Scholar 

  • Reynisdottir I, Polyak K, Iavarone A, Massague J (1995) Kip/Cip and Ink4 inhibitors cooperate to induce cell-cycle arrest in response to TGF-b. Genes Dev 9:1831–1845

    CAS  Google Scholar 

  • Robinson AS, Hines V, Wittrup KD (1994) Protein disulfide isomerase overexpression increases secretion of foreign proteins in Saccharomyces cerevisiae. Biotechnology 12:381–384

    CAS  Google Scholar 

  • Rowan S, Ludwig RL, Haupt Y, Bates S, Lu X, Oren M, Vousden KH (1996) Specific loss of apoptotic but not cell-cycle arrest function in a human tumor derived p53 mutant. EMBO J 15:827–838

    CAS  Google Scholar 

  • Ryll T, Dutina G, Reyes A, Gunson J, Krummen L, Etcheverry T (2000) Performance of small-scale CHO perfusion cultures using an acoustic cell filtration device for cell retention: characterization of separation efficiency and impact of perfusion on product quality. Biotechnol Bioeng 69:440–449

    CAS  Google Scholar 

  • Sawai M, Takase K, Teraoka H, Tsukada K (1990) Reversible G1 arrest in the cell cycle of human lymphoid cell lines by dimethyl sulfoxide. Exp Cell Res 187:4–10

    CAS  Google Scholar 

  • Schatz SM, Kerschbaumer RJ, Gerstenbauer G, Kral M, Dorner F, Scheiflinger F (2003) Higher expression of Fab antibody fragments in a CHO cell line at reduced temperature. Biotechnol Bioeng 84:433–438

    CAS  Google Scholar 

  • Sgambato A, Cittadini A, Faraglia B, Weinstein IB (2000) Multiple functions of p27(Kip1) and its alterations in tumor cells: a review. J Cell Physiol 183:18–27

    CAS  Google Scholar 

  • Sheikh MS, Carrier F, Papathanasiou MA, Hollander MC, Zhan Q, Yu K, Fornace AJ Jr (1997) Identification of several human homologs of hamster DNA damage-inducible transcripts. Cloning and characterization of a novel UV-inducible cDNA that codes for a putative RNA-binding protein. J Biol Chem 272:26720–26726

    CAS  Google Scholar 

  • Shusta EV, Raines RT, Pluckthun A, Wittrup KD (1998) Increasing the secretory capacity of Saccharomyces cerevisiae for production of single-chain antibody fragments. Nat Biotechnol 16:773–777

    CAS  Google Scholar 

  • Simpson NH, Milner AE, AlRubeai M (1997) Prevention of hybridoma cell death by bcl-2 during suboptimal culture conditions. Biotechnol Bioeng 54:1–16

    CAS  Google Scholar 

  • Simpson NH, Singh RP, Emery AN, Al-Rubeai M (1999) Bcl-2 overexpression reduces growth rate and prolongs G1 phase in continuous chemostat cultures of hybridoma cells. Biotechnol Bioeng 64:174–186

    CAS  Google Scholar 

  • Smales CM, Dinnis DM, Stansfield SH, Alete D, Sage EA, Birch JR, Racher AJ, Marshall CT, James DC (2004) Comparative proteomic analysis of GS-NS0 murine myeloma cell lines with varying recombinant monoclonal antibody production rate. Biotechnol Bioeng 88:474–488

    CAS  Google Scholar 

  • Sonna LA, Fujita J, Gaffin SL, Lilly CM (2002) Effects of heat and cold stress on mammalian gene expression. J Appl Physiol 92:1725–1742

    CAS  Google Scholar 

  • Srinivas S, Sironmani TA, Shanmugam G (1991) Dimethyl sulfoxide inhibits the expression of early growth-response genes and arrests fibroblasts at quiescence. Exp Cell Res 196:279–286

    CAS  Google Scholar 

  • Stein GS, Baserga R, Giordano A, Denhardt DT (1999) The molecular basis of cell cycle and growth control. Wiley-Liss, NY, p 389

    Google Scholar 

  • Sugimoto M, Martin N, Wilks DP, Tamai K, Huot TJ, Pantoja C, Okumura K, Serrano M, Hara E (2002) Activation of cyclin D1-kinase in murine fibroblasts lacking both p21 (Cip1) and p27 (Kip1). Oncogene 21:8067–8074

    CAS  Google Scholar 

  • Sun WH, Coleman TR, DePamphilis ML (2002) Cell cycle-dependent regulation of the association between origin recognition proteins and somatic cell chromatin. EMBO J 21:1437–1446

    CAS  Google Scholar 

  • Tey BT, Al-Rubeai M (2005) Effect of Bcl-2 overexpression on cell cycle and antibody productivity in chemostat cultures of myeloma NS0 cells. J Biosci Bioeng 100:303–310

    CAS  Google Scholar 

  • Toyoshima H, Hunter T (1994) p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell 78:67–74

    CAS  Google Scholar 

  • Trummer E, Fauland K, Seidinger S, Schriebl K, Lattenmayer C, Kunert R, Vorauer-Uhl K, Weik R, Borth N, Katinger H, Muller D (2006) Process parameter shifting: part II. Biphasic cultivation – a tool for enhancing the volumetric productivity of batch processes using Epo-Fc expressing CHO cells. Biotechnol Bioeng 94:1045–1052

    CAS  Google Scholar 

  • Wang SY, Melkoumian Z, Woodfork KA, Cather C, Davidson AG, Wonderlin WF, Strobl JS (1998) Evidence for an early G1 ionic event necessary for cell cycle progression and survival in the MCF-7 human breast carcinoma cell line. J Cell Physiol 176:456–464

    CAS  Google Scholar 

  • Wassmann H, Greiner C, Hulsmann S, Moskopp D, Speckmann EJ, Meyer J, Van Aken H (1998) Hypothermia as cerebroprotective measure. Experimental hypoxic exposure of brain slices and clinical application in critically reduced cerebral perfusion pressure. Neurol Res 20:S61–S65

    Google Scholar 

  • Watanabe S, Shuttleworth J, Al-Rubeai M (2002) Regulation of cell cycle and productivity in NS0 cells by the over-expression of p21CIP1. Biotechnol Bioeng 77:1–7

    CAS  Google Scholar 

  • Wellmann S, Buhrer C, Moderegger E, Zelmer A, Kirschner R, Koehne P, Fujita J, Seeger K (2004) Oxygen-regulated expression of the RNA-binding proteins RBM3 and CIRP by a HIF-1-independent mechanism. J Cell Sci 117:1785–1794

    CAS  Google Scholar 

  • Wong DC, Wong KT, Lee YY, Morin PN, Heng CK, Yap MG (2006) Transcriptional profiling of apoptotic pathways in batch and fed-batch CHO cell cultures. Biotechnol Bioeng 94:373–382

    CAS  Google Scholar 

  • Wright CF, Oswald BW, Dellis S (2001) Vaccinia virus late transcription is activated in vitro by cellular heterogeneous nuclear ribonucleoproteins. J Biol Chem 276:40680–40686

    CAS  Google Scholar 

  • Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22:1393–1398

    CAS  Google Scholar 

  • Xue S, Rao PN (1981) Sodium butyrate blocks HeLa cells preferentially in early G1 phase of the cell cycle. J Cell Sci 51:163–171

    CAS  Google Scholar 

  • Xue JH, Nonoguchi K, Fukumoto M, Sato T, Nishiyama H, Higashitsuji H, Itoh K, Fujita J (1999) Effects of ischemia and H2O2 on the cold stress protein CIRP expression in rat neuronal cells. Free Radic Biol Med 27:1238–1244

    CAS  Google Scholar 

  • Yang C, Carrier F (2001) The UV-inducible RNA-binding protein A18 (A18 hnRNP) plays a protective role in the genotoxic stress response. J Biol Chem 276:47277–47284

    CAS  Google Scholar 

  • Yoon SK, Kim SH, Lee GM (2003a) Effect of low culture temperature on specific productivity and transcription level of anti-4-1BB antibody in recombinant Chinese hamster ovary cells. Biotechnol Prog 19:1383–1386

    CAS  Google Scholar 

  • Yoon SK, Song JY, Lee GM (2003b) Effect of low culture temperature on specific productivity, transcription level, and heterogeneity of erythropoietin in Chinese hamster ovary cells. Biotechnol Bioeng 82:289–298

    CAS  Google Scholar 

  • Yoon SK, Hwang SO, Lee GM (2004) Enhancing effect of low culture temperature on specific antibody productivity of recombinant Chinese hamster ovary cells: clonal variation. Biotechnol Prog 20:1683–1688

    CAS  Google Scholar 

  • Yoon SK, Hong JK, Choo SH, Song JY, Park HW, Lee GM (2006) Adaptation of Chinese hamster ovary cells to low culture temperature: cell growth and recombinant protein production. J Biotechnol 122:463–472

    CAS  Google Scholar 

  • Zeng AP, Deckwer WD (1999) Model simulation and analysis of perfusion culture of mammalian cells at high cell density. Biotechnol Prog 15:373–382

    CAS  Google Scholar 

  • Zeng AP, Deckwer WD, Hu WS (1998) Determinants and rate laws of growth and death of hybridoma cells in continuous culture. Biotechnol Bioeng 57:642–654

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from Science Foundation Ireland (SFI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Gammell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, N., Gammell, P. & Clynes, M. Proliferation control strategies to improve productivity and survival during CHO based production culture. Cytotechnology 53, 33–46 (2007). https://doi.org/10.1007/s10616-007-9047-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-007-9047-6

Keywords

Navigation