Skip to main content
Log in

A general reduction scheme for reactive transport in porous media

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

We present a method to transform the governing equations of multispecies reactive transport in porous media. The reformulation leads to a smaller problem size by decoupling of equations and by elimination of unknowns, which increases the efficiency of numerical simulations. The reformulation presented here is a generalization of earlier works. In fact, a whole class of transformations is now presented. This class is parametrized by the choice of certain transformation matrices. For specific choices, some known formulations of reactive transport can be retrieved. Hence, the software based on the presented transformation can be used to obtain efficiency comparisons of different solution approaches. For our efficiency tests, we use the MoMaS benchmark problem on reactive transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Amir, L., Kern, M.: A global method for coupling transport with chemistry in heterogeneous porous media. Comput. Geosci. 14, 465–481 (2010). doi:10.1007/s10596-009-9162-x

    Article  MATH  Google Scholar 

  2. Bethke, C.M.: Geochemical Reaction Modeling, Oxford University Press, New York (1996)

    Google Scholar 

  3. Carrayrou, J.: Modélisation du transport de solutés réactifs en milieu poreux saturé, doctoral thesis, Université Louis Pasteur Straßburg (2001)

  4. Carrayrou, J., Hoffmann, J., Knabner, P., Kräutle, S., de Dieuleveult, C., Erhel, J., Van der Lee, J., Lagneau, V., Mayer, K.U., McQuarrie, K.T.B.: Comparison of numerical methods for simulating strongly non-linear and heterogeneous reactive transport problems—the MoMaS benchmark case. Comput. Geosci. 14, 483–502 (2010). doi:10.1007/s10596-010-9178-2

    Article  MATH  Google Scholar 

  5. Carrayrou, J., Kern, M., Knabner, P.: Reactive transport benchmark of MoMaS. Comput. Geosci. 14, 385–392 (2010). doi:10.1007/s10596-009-9157-7

    Article  MATH  Google Scholar 

  6. Carrayrou, J., Mosé, R., Behra, P.: Operator-splitting procedures for reactive transport and comparison of mass balance errors. J. Contam. Hydrol. 68, 239–268 (2004). doi:10.1016/S0169-7722(03)00141-4

    Article  Google Scholar 

  7. de Dieuleveult, C.: Un modèle numérique global et performant pour le couplage géochimie-transport, doctoral thesis, Université de Rennes 1 (2008)

  8. de Dieuleveult, C., Erhel, J., Kern, M.: A global strategy for solving reactive transport equations. J. Comput. Phys. 228, 6395–6410 (2009)

    Article  MATH  Google Scholar 

  9. Hoffmann, J.: Reactive transport and mineral dissolution/precipitation in porous media: efficient solution algorithms, benchmark computations and existence of global solutions, doctoral thesis, University Erlangen-Nuremberg (2010)

  10. Hoffmann, J., Kräutle, S., Knabner, P.: A parallel global-implicit 2-D solver for reactive transport problems in porous media based on a reduction scheme and its application to the MoMaS benchmark problem. Comput. Geosci. 14, 421–433 (2010). doi:10.1007/s10596-009-9173-7

    Article  MATH  Google Scholar 

  11. Kräutle, S.: General multi-species reactive transport problems in porous media: efficient numerical approaches and existence of global solutions, habilitation thesis, University Erlangen-Nuremberg (2008)

  12. Kräutle, S.: The semismooth Newton method for multicomponent reactive transport with minerals. Adv. Water Resour. 34, 137–151 (2011). doi:10.1016/j.advwatres.2010.10.004

    Article  Google Scholar 

  13. Kräutle, S., Knabner, P.: A new numerical reduction scheme for fully coupled multicomponent transport-reaction problems in porous media. Water Resour. Res. 41, W09414 (2005). doi:10.1029/2004WR003624

    Article  Google Scholar 

  14. Kräutle, S., Knabner, P.: A reduction scheme for coupled multicomponent transport-reaction problems in porous media: generalization to problems with heterogeneous equilibrium reactions. Water Resour. Res. 43, W03429 (2007). doi:10.1029/2005WR004465

    Article  Google Scholar 

  15. Lagneau, V., van der Lee, J.: HYTEC results of the MoMaS reactive transport benchmark. Comput. Geosci. 14, 435–449 (2010). doi:10.1007/s10596-009-9159-5

    Article  MATH  Google Scholar 

  16. Mayer, K.U., MacQuarrie, K.T.B.: Formulation of the multicomponent reactive transport code MIN3P and implementation of MoMaS benchmark problems. Comput. Geosci. 14, 405–419 (2010). doi:10.1007/s10596-009-9158-6

    Article  MATH  Google Scholar 

  17. Mayer, K.U., Frind, E.O., Blowes, D.W.: Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactions. Water Resour. Res. 38, 1174–1194 (2002). doi:10.1029/2001WR000862

    Article  Google Scholar 

  18. Morel, F., Hering, J.: Principles and Applications of Aquatic Chemistry, Wiley, New York (1993)

    Google Scholar 

  19. Saaltink, M.W., Ayora, C., Carrera, J.: A mathematical formulation for reactive transport that eliminates mineral concentrations. Water Resour. Res. 34, 1649–1656 (1998)

    Article  Google Scholar 

  20. Saaltink, M.W., Carrera, J., Ayora, C.: A comparison of two approaches for reactive transport modelling. J. Geochem. Explo. 69–70, 97–101 (2000)

    Article  Google Scholar 

  21. Scheidegger, A.E.: General theory of dispersion in porous media. J. Geophys. Res. 66, 3273–3278 (1961)

    Article  Google Scholar 

  22. van der Lee, J., De Windt, L., Lagneau, V., Goblet, P.: Module-oriented modeling of reactive transport with HYTEC. Comput. Geosci. 29, 265–275 (2003)

    Article  Google Scholar 

  23. Wieners, C.: Distributed point objects. A new concept for parallel finite elements. In: Kornhuber, R., Hoppe, R., Priaux, J., Pironneau, O., Widlund, O., Xu, J. (eds.) Domain Decomposition Methods in Science and Engineering, Lecture notes in computational science and engineering, vol. 40, pp. 175–183. Springer (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Kräutle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffmann, J., Kräutle, S. & Knabner, P. A general reduction scheme for reactive transport in porous media. Comput Geosci 16, 1081–1099 (2012). https://doi.org/10.1007/s10596-012-9304-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-012-9304-4

Keywords

Mathematics Subject Classifications (2010)

Navigation