Skip to main content

Advertisement

Log in

Estimation of the census (Nc) and effective (Ne) population size of a wild mandrill (Mandrillus sphinx) horde in the Lopé National Park, Gabon using a non-invasive genetic approach

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Mandrills (Mandrillus sphinx) are enigmatic primates endemic to central Africa and are threatened by habitat loss and hunting. However, effective management of this species is limited by insufficient information about their numbers in the wild, since population size can impact viability and genetic diversity. Here, we used for the first time a non-invasive genetic approach to estimate the census and effective population size (Nc and Ne respectively) of a wild mandrill horde in Lopé National Park (Gabon). We amplified a total of 232 unique genotypes using a panel of 16 microsatellite loci from mandrill fecal samples collected over three years (2016–2018). Using the single sample estimator in CAPWIRE, we obtained an estimate for Nc of 989 (95% CI 947–1399) individuals which was close to that obtained from the multiple sample estimator implemented in the program MARK [992 (95% CI 708–1453)]. These estimates approximately correspond with previous visual counts obtained from the same horde. Based on a model implemented in the program NeOGen, when samples were pooled across all three sampling sessions, statistical power was sufficient for a robust Ne estimate. Using the three one-sample estimators in the NeESTIMATORV2 program and the one in COLONY, Ne was estimated at 292 (95% CI 239–370) and 135 (95% CI 108–176) individuals respectively, indicating that Ne is between 13.6 and 29.5% of Nc. This study showed that non-invasive genetics is an effective tool for providing accurate estimates of horde sizes of mandrills and other elusive primates, provided enough samples and hypervariable loci are genotyped.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Upon acceptance, all data will be made available through an online data repository (DataDryad.org).

References

  • Abernethy KA, Maisels F (2019) Mandrillus sphinx. The IUCN Red List of Threatened Species. https://doi.org/10.2305/IUCN.UK.2019-3.RLTS.T12754A17952325.en.

  • Abernethy KA, White LJT, Wickings EJ (2002) Hordes of mandrills (Mandrillus sphinx): extreme group size and seasonal male presence. J Zool 258(1):131–137. https://doi.org/10.1017/s0952836902001267

    Article  Google Scholar 

  • Arandjelovic M, Head J, Kuehl H, Boesch C, Robbins MM, Maisels F, Vigilant L (2010) Effective non-invasive genetic monitoring of multiple wild western gorilla groups. Biol Cons 143(7):1780–1791

    Article  Google Scholar 

  • Arrendal J, Vila C, Björklund M (2007) Reliability of noninvasive genetic census of otters compared to field censuses. Conserv Genet 8(5):1097–1107

    Article  Google Scholar 

  • Banks SC, Hoyle SD, Horsup A, Sunnucks P, Taylor AC (2003) Demographic monitoring of an entire species (the northern hairy-nosed wombat, Lasiorhinus krefftii) by genetic analysis of non-invasively collected material. Anim Conserv Forum 6(2):101–107

    Article  Google Scholar 

  • Bata MN, Easton J, Fankem O, Wacher T, Bruce T, Eliseé T, Taguieteu PA, Olson D (2017) Extending the Northeastern distribution of Mandrills (Mandrillus sphinx) into the Dja Faunal reserve, Cameroon. Afr Primates 12:65–67

    Google Scholar 

  • Beehner JC, Berhanu G, Bergman TJ, McCann C (2007) Population estimate for geladas (Theropithecus gelada) living in and around the Simien Mountains National Park, Ethiopia. SINET 30(2):149–154

    Google Scholar 

  • Bellemain EVA, Swenson JE, Tallmon D, Brunberg S, Taberlet P (2005) Estimating population size of elusive animals with DNA from hunter-collected feces: four methods for brown bears. Conserv Biol 19(1):150–161

    Article  Google Scholar 

  • Benoit L, Mboumba S, Willaume E, Kappeler PM, Charpentier MJE (2014) Using next-generation sequencing methods to isolate and characterize 24 simple sequence repeat loci in mandrills (Mandrillus sphinx). Conserv Genet Resour 6(4):903–905. https://doi.org/10.1007/s12686-014-0237-1

    Article  Google Scholar 

  • Bergl RA, Vigilant L (2007) Genetic analysis reveals population structure and recent migration within the highly fragmented range of the Cross River gorilla (Gorilla gorilla diehli). Mol Ecol 16(3):501–516

    Article  PubMed  Google Scholar 

  • Blower DC, Riginos C, Ovenden JR (2019) neogen: A tool to predict genetic effective population size (Ne) for species with generational overlap and to assist empirical Ne study design. Mol Ecol Resour 19(1):260–271. https://doi.org/10.1111/1755-0998.12941

    Article  PubMed  Google Scholar 

  • Bonin A, Bellemain E, Bronken Eidesen P, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetics studies. Mol Ecol 13(11):3261–3273

    Article  CAS  PubMed  Google Scholar 

  • Boonratana R, Chalise M, Chetry D, Htun S, Timmins RJ (2020) Macaca assamensis ssp. Assamensis. The IUCN Red List of Threatened Species 2020: E.T39766A17985704. https://doi.org/10.2305/IUCN.UK.20202.RLTS.T39766A17985704.en

  • Bronikowski AM, Cords M, Alberts SC, Altmann J, Brockman DK, Fedigan LM, Pusey A, Stoinski T, Strier KB, Morris WF (2016) Female and male life tables for seven wild primate species. Sci Data 3(1):1–8

    Article  Google Scholar 

  • Buckland G (1980) Fox Talbot and the invention of photography. David R Godine Pub.

  • Caballero A (1994) Developments in the prediction of effective population size. Heredity 73(6):657–679

    Article  PubMed  Google Scholar 

  • Charlesworth B (2009) Effective population size and patterns of molecular evolution and variation. Nat Rev Genet 10(3):195–205

    Article  CAS  PubMed  Google Scholar 

  • Chetry D, Medhi R, Bhattacherjee P (2003) Anti-predator behaviour of stumptail macaques in Gibbon Wildlife Sanctuary, Assam India. Asian Primates 8(4):20–22

    Google Scholar 

  • Christman MC (2004) Sequential sampling for rare and geographically clustered populations. Sampling Rare or Elusive Species. Island Press, Washington, DC, pp 134–145

    Google Scholar 

  • Clemento AJ, Anderson EC, Boughton D, Girman D, Garza JC (2009) Population genetic structure and ancestry of Oncorhynchus mykiss populations above and below dams in south-central California. Conserv Genet 10(5):1321

    Article  Google Scholar 

  • Dawnay N, Dawnay L, Hughes RN, Cove R, Taylor MI (2011) Substantial genetic structure among stocked and native populations of the European grayling (Thymallus thymallus, Salmonidae) in the United Kingdom. Conserv Genet 12(3):731–744

    Article  Google Scholar 

  • Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR (2014) NeEstimator v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14(1):209–214

    Article  CAS  PubMed  Google Scholar 

  • Dou H, Yang H, Feng L, Mou P, Wang T, Ge J (2016) Estimating the population size and genetic diversity of Amur tigers in Northeast China. PLoS ONE 11(4):e0154254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • England PR, Cornuet J-M, Berthier P, Tallmon DA, Luikart G (2006) Estimating effective population size from linkage disequilibrium: severe bias in small samples. Conserv Genet 7(2):303

    Article  Google Scholar 

  • England PR, Luikart G, Waples RS (2010) Early detection of population fragmentation using linkage disequilibrium estimation of effective population size. Conserv Genet 11(6):2425–2430

    Article  Google Scholar 

  • Ernest HB, Penedo MCT, May BP, Syvanen M, Boyce WM (2000) Molecular tracking of mountain lions in the Yosemite Valley region in California: genetic analysis using microsatellites and faecal DNA. Mol Ecol 9(4):433–441

    Article  CAS  PubMed  Google Scholar 

  • Evett I, Weir B (1998) Interpreting DNA evidence: statistical genetics for forensic scientists.

  • Excoffier L, Lischer H (2015) Arlequin (Version 3.5). Swiss institute of bioinformatics.

  • Flagstad Ø, Hedmark E, Landa A, Brøseth H, Persson J, Andersen R, Segerström P, Ellegren H (2004) Colonization history and noninvasive monitoring of a reestablished wolverine population. Conserv Biol 18(3):676–688. https://doi.org/10.1111/j.1523-1739.2004.00328.x-i1

    Article  Google Scholar 

  • Frankham R (1995) Conservation genetics. Annu Rev Genet 29(1):305–327. https://doi.org/10.1146/annurev.ge.29.120195.001513

    Article  CAS  PubMed  Google Scholar 

  • Frankham R (2005) Genetics and extinction. Biol Cons 126(2):131–140

    Article  Google Scholar 

  • Frankham R, Ballou SEJD, Briscoe DA, Ballou JD (2002) Introduction to conservation genetics. Cambridge University Press

    Book  Google Scholar 

  • Frankham R, Bradshaw CJ, Brook BW (2014) Genetics in conservation management: revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol Cons 170:56–63

    Article  Google Scholar 

  • Gaetano J (2018) Holm-Bonferroni sequential correction: an excel calculator (1.3) [Microsoft Excel workbook]. https://www.researchgate.net/publication/322568540_Holm-Bonferroni_sequential_correction_An_Excel_calculator_13

  • Gittleman JL (2001) Carnivore conservation.

  • Granjon A-C, Robbins MM, Arinaitwe J, Cranfield MR, Eckardt W, Mburanumwe I, Musana A, Robbins AM, Roy J, Sollmann R, Vigilant L, Hickey JR (2020) Estimating abundance and growth rates in a wild mountain gorilla population. Anim Conserv 23(4):455–465. https://doi.org/10.1111/acv.12559

    Article  Google Scholar 

  • Gurov T, Atanassov E, Karaivanova A, Serbezov R, Spassov N (2017) Statistical estimation of brown bears (Ursus arctos L.) population in the Rhodope mountains. Procedia Computer Science 108:2028–2037. https://doi.org/10.1016/j.procs.2017.05.272

    Article  Google Scholar 

  • Guschanski K, Vigilant L, McNeilage A, Gray M, Kagoda E, Robbins MM (2009) Counting elusive animals: comparing field and genetic census of the entire mountain gorilla population of Bwindi Impenetrable National Park, Uganda. Biol Conserv 142(2):290–300

    Article  Google Scholar 

  • Hájková P, Zemanová B, Roche K, Hájek B (2009) An evaluation of field and noninvasive genetic methods for estimating Eurasian otter population size. Conserv Genet 10(6):1667–1681. https://doi.org/10.1007/s10592-008-9745-4

    Article  Google Scholar 

  • Harpending H, Cowan S (1986) Primate population structure: evaluation of models. Am J Phys Anthropol 70(1):63–68

    Article  CAS  PubMed  Google Scholar 

  • Hedgecock D, Launey S, Pudovkin AI, Naciri Y, Lapègue S, Bonhomme F (2007) Small effective number of parents (Nb) inferred for a naturally spawned cohort of juvenile European flat oysters Ostrea edulis. Mar Biol 150(6):1173–1182. https://doi.org/10.1007/s00227-006-0441-y

    Article  Google Scholar 

  • Hedwig D, Kienast I, Bonnet M, Curran BK, Courage A, Boesch C, Kühl HS, King T (2018) A camera trap assessment of the forest mammal community within the transitional savannah-forest mosaic of the Batéké Plateau National Park, Gabon. Afr J Ecol 56(4):777–790. https://doi.org/10.1111/aje.12497

    Article  Google Scholar 

  • Holm S (1979) A Simple Sequential Rejective Method Procedure 6:65–70

    Google Scholar 

  • Hongo S (2014) New evidence from observations of progressions of mandrills (Mandrillus sphinx): a multilevel or non-nested society? Primates 55(4):473–481

    Article  PubMed  Google Scholar 

  • Hoshino J, Mori A, Kudo H, Kawai M (1984) Preliminary report on the grouping of mandrills (Mandrillus sphinx) in Cameroon. Primates 25(3):295–307

    Article  Google Scholar 

  • Johnson AE, Knott CD, Pamungkas B, Pasaribu M, Marshall AJ (2005) A survey of the orangutan (Pongo pygmaeus wurmbii) population in and around Gunung Palung National Park, West Kalimantan, Indonesia based on nest counts. Biol Conserv 121(4):495–507. https://doi.org/10.1016/j.biocon.2004.06.002

    Article  Google Scholar 

  • Jones OR, Wang J (2010) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10(3):551–555

    Article  PubMed  Google Scholar 

  • Jorde PE, Ryman N (2007) Unbiased estimator for genetic drift and effective population size. Genetics 177(2):927–935. https://doi.org/10.1534/genetics.107.075481

    Article  PubMed  PubMed Central  Google Scholar 

  • Jouventin P (1975) Observations sur la socio-écologie du mandrill. La Terre et La Vie.

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12):1647–1649. https://doi.org/10.1093/bioinformatics/bts199

    Article  PubMed  PubMed Central  Google Scholar 

  • Kifle Z, Belay G, Bekele A (2013) Population size, group composition and behavioral ecology of geladas (Theropithecus gelada) and human-gelada conflict in Wonchit Valley, Ethiopia. Pak J Biol Sci 16:1248–1259

    Article  PubMed  Google Scholar 

  • Kimura M, Crow JF (1963) The measurement of effective population number. Evolution 279–288.

  • Kingdon J (1997) The Kingdon ®eld guide to African mammal

  • Kinnaird MF, O’brien TG (1991) Viable populations for an endangered forest primate, the Tana River crested mangabey (Cercocebus galeritus galeritus). Conserv Biol 5(2):203–213

    Article  Google Scholar 

  • Langergraber KE, Mitani JC, Vigilant L (2007) The limited impact of kinship on cooperation in wild chimpanzees. Proc Natl Acad Sci 104(19):7786–7790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leberg P (2005) Genetic approaches for estimating the effective size of populations. J Wildl Manag 69(4):1385–1399. https://doi.org/10.2193/0022-541X(2005)69[1385:GAFETE]2.0.CO;2

    Article  Google Scholar 

  • Lucchini V, Fabbri E, Marucco F, Ricci S, Boitani L, Randi E (2002) Noninvasive molecular tracking of colonizing wolf (Canis lupus) packs in the western Italian Alps. Mol Ecol 11(5):857–868

    Article  CAS  PubMed  Google Scholar 

  • Luikart G, Ryman N, Tallmon DA, Schwartz MK, Allendorf FW (2010) Estimation of census and effective population sizes: the increasing usefulness of DNA-based approaches. Conserv Genet 11(2):355–373

    Article  CAS  Google Scholar 

  • Madsen T, Shine R, Olsson M, Wittzell H (1999) Restoration of an inbred adder population. Nature 402(6757):34–35

    Article  CAS  Google Scholar 

  • Matschiner M, Salzburger W (2009) TANDEM: integrating automated allele binning into genetics and genomics workflows. Bioinformatics 25(15):1982–1983. https://doi.org/10.1093/bioinformatics/btp303

    Article  CAS  PubMed  Google Scholar 

  • McKelvey KS, Schwartz MK (2005) Dropout: a program to identify problem loci and samples for noninvasive genetic samples in a capture-mark-recapture framework. Mol Ecol Notes 5(3):716–718

    Article  CAS  Google Scholar 

  • Miller CR, Waits LP, Joyce P (2005) A new method for estimating the size of small populations from genetic mark–recapture data. Mol Ecol 14(7):1991–2005

    Article  CAS  PubMed  Google Scholar 

  • Mowat G, Strobeck C (2000) Estimating population size of grizzly bears using hair capture, DNA profiling, and mark-recapture analysis. J Wildlife Manag 183–193.

  • Nunney L, Elam DR (1994) Estimating the effective population size of conserved populations. Conserv Biol 8(1):175–184

    Article  Google Scholar 

  • Oates JF, Butynski TM (2008) Mandrillus sphinx. IUCN Red List of Threatened Species. Version

  • Otis DL, Burnham KP, White GC, Anderson DR (1978) Statistical inference from capture data on closed animal populations. Wildl Monogr 62:3–135

    Google Scholar 

  • Paetkau D (2003) An empirical exploration of data quality in DNA-based population inventories. Mol Ecol 12(6):1375–1387. https://doi.org/10.1046/j.1365-294X.2003.01820.x

    Article  CAS  PubMed  Google Scholar 

  • Palstra FP, Ruzzante DE (2008) Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence? Mol Ecol 17(15):3428–3447. https://doi.org/10.1111/j.1365-294X.2008.03842.x

    Article  PubMed  Google Scholar 

  • Puechmaille SJ, Petit EJ (2007) Empirical evaluation of non-invasive capture–mark–recapture estimation of population size based on a single sampling session. J Appl Ecol 44(4):843–852

    Article  Google Scholar 

  • Regazzi R (ed) (2007) Molecular mechanisms of exocytosis. Landes Bioscience/Eurekah.com. Springer, Berlin

    Google Scholar 

  • Richards C, Leberg PL (1996) Temporal changes in allele frequencies and a population’s history of severe bottlenecks. Conserv Biol 10(3):832–839

    Article  Google Scholar 

  • Rogers ME, Abernethy KA, Fontaine B, Wickings EJ, White LJ, Tutin CE (1996) Ten days in the life of a mandrill horde in the Lope Reserve, Gabon. Am J Primatol 40(4):297–313

    Article  PubMed  Google Scholar 

  • Ruiz-Olmo J, Saavedra D, Jiménez J (2001) Testing the surveys and visual and track censuses of Eurasian otters (Lutra lutra). J Zool 253(3):359–369

    Article  Google Scholar 

  • Schmeller DS, Merilä J (2007) Demographic and genetic estimates of effective population and breeding size in the amphibian Rana temporaria. Conserv Biol 21(1):142–151. https://doi.org/10.1111/j.1523-1739.2006.00554.x

    Article  PubMed  Google Scholar 

  • Schwartz MK, Cushman SA, McKelvey KS, Hayden J, Engkjer C (2006) Detecting genotyping errors and describing American black bear movement in northern Idaho. Ursus 17(2):138–148

    Article  Google Scholar 

  • Setchell JM, Charpentier M, Wickings EJ (2005) Sexual selection and reproductive careers in mandrills (Mandrillus sphinx). Behav Ecol Sociobiol 58(5):474–485

    Article  Google Scholar 

  • Sithaldeen R, Rylands AB (2020) Papio ursinus ssp. Ursinus. The IUCN Red List of Threatened Species 2020:e.T136856A17986139. https://doi.org/10.2305/IUCN.UK.2020-2.RLTS.T136856A17986139.en

  • Soto-Calderón ID, Ntie S, Mickala P, Maisels F, Wickings EJ, Anthony NM (2009) Effects of storage type and time on DNA amplification success in tropical ungulate faeces. Mol Ecol Resour 9(2):471–479. https://doi.org/10.1111/j.1755-0998.2008.02462.x

    Article  CAS  PubMed  Google Scholar 

  • Stone OML, Laffan SW, Curnoe D, Rushworth I, Herries AIR (2012) Distribution and population estimate for the chacma baboon (Papio ursinus) in KwaZulu-Natal, South Africa. Primates 53(4):337–344. https://doi.org/10.1007/s10329-012-0303-9

    Article  PubMed  Google Scholar 

  • Tallmon DA, Luikart G, Beaumont MA (2004) Comparative evaluation of a new effective population size estimator based on approximate Bayesian computation. Genetics 167(2):977–988

    Article  PubMed  PubMed Central  Google Scholar 

  • Valière N (2002) gimlet: a computer program for analysing genetic individual identification data. Mol Ecol Notes 2(3):377–379. https://doi.org/10.1046/j.1471-8286.2002.00228.x-i2

    Article  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4(3):535–538

    Article  CAS  Google Scholar 

  • Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10(1):249–256. https://doi.org/10.1046/j.1365-294X.2001.01185.x

    Article  CAS  PubMed  Google Scholar 

  • Wallis J (2020) Papio cynocephalus ssp. Ibeanus. The IUCN Red List of Threatened Species 2020: E.T136862A92251072. https://doi.org/10.2305/IUCN.UK.2020-2.RLTS.T136862A92251072.en

  • Wang J (2009) A new method for estimating effective population sizes from a single sample of multilocus genotypes. Mol Ecol 18(10):2148–2164

    Article  PubMed  Google Scholar 

  • Waples RS (1989) A generalized approach for estimating effective population size from temporal changes in allele frequency. Genetics 121(2):379–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waples RS (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv Genet 7(2):167

    Article  Google Scholar 

  • Waples RS, Do CHI (2010) Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evol Appl 3(3):244–262

    Article  PubMed  Google Scholar 

  • Westemeier RL, Brawn JD, Simpson SA, Esker TL, Jansen RW, Walk JW, Kershner EL, Bouzat JL, Paige KN (1998) Tracking the long-term decline and recovery of an isolated population. Science 282(5394):1695–1698

    Article  CAS  PubMed  Google Scholar 

  • White L (1994) The effects of commercial mechanised selective logging on a transect in lowland rainforest in the Lopé Reserve, Gabon. J Trop Ecol 10(3):313–322

    Article  Google Scholar 

  • White GC, Burnham KP (1999) Program MARK: survival estimation from populations of marked animals. Bird Study 46(sup1):S120–S139. https://doi.org/10.1080/00063659909477239

    Article  Google Scholar 

  • Wright S (1938) Size of population and breeding structure in relation to evolution. Science 87:430–431

    Google Scholar 

  • White L, Abernethy K (1997) A guide to the vegetation of the Lopé Reserve. Wildlife Conservation Society.

  • Zhan XJ, Li M, Zhang ZJ, Goossens B, Chen YP, Wang HJ, Bruford MW, Wei FW (2006) Molecular censusing doubles giant panda population estimate in a key nature reserve.

Download references

Acknowledgements

This study was made possible by the ongoing research project on wild populations of the mandrill in LNP, Gabon. The project is a collaborative effort between researchers and students from various institutions, namely Université des Sciences et Techniques de Masuku (USTM), Agence Nationale des Parcs Nationaux (ANPN) and Institut de Recherche en Ecologie Tropicale (IRET), Gabon; University of New Orleans (UNO), USA; University of Stirling (UoS), UK. This research was funded by the Freeport McMoran Endowed Chair (Nicola Anthony, University of New Orleans, US). We thank Audubon Nature Institute and the University of New Orleans who provided the endowed chair position and funding from UNO’s Office Of Research (ORSP). We thank the Centre National de la Recherche Scientifique et Technologique (CENAREST) and the Agence National des Parcs Nationaux (ANPN) of Gabon for research permits No. AR0023/17/MESRSFC/CENAREST/CG/CST/CSAR; AR0036/16/MESRSFC/CENAREST/CG/CST/CSAR and entry to LNP No. AE17 O 1 6/PR/ANPN/SE/CS/AFKP; AE16025/PR/ANPN/SE/CS/AFKP. We are very grateful to the cooperative field agents and staff of the Station Etude des Gorilles et Chimpanzés (SEGC), Gabon, who enthusiastically helped us collect the fecal samples. We also thank the many UNO undergraduate students for their valuable assistance in the lab: Ibraheem Hachem, Justine Davis, Shyla Irthum, Kaleb Hill, Gina Kissee, Claire Melancon, Patrick Hall and Gabrielle Sehon.

Funding

This research was funded by the Freeport-McMoran Endowed Chair (Nicola Anthony, University of New Orleans, US). We thank Audubon Nature Institute and the University of New Orleans who provided the endowed chair position and funding from UNO’s Office Of Research (ORSP) and College of Sciences (CoS).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and design of the study. Material preparation, data collection and analysis were carried out by Amour Guibinga Mickala, Anna Weber, Stephan Ntie, Prakhar Gahlot, Nicola Anthony, David Lehmann, Katherine Abernethy and Patrick Mickala. The first draft of the manuscript was written by Amour Guibinga Mickala and all authors commented on earlier drafts of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nicola Anthony.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 554 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

GuibingaMickala, A., Weber, A., Ntie, S. et al. Estimation of the census (Nc) and effective (Ne) population size of a wild mandrill (Mandrillus sphinx) horde in the Lopé National Park, Gabon using a non-invasive genetic approach. Conserv Genet 23, 871–883 (2022). https://doi.org/10.1007/s10592-022-01458-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-022-01458-2

Keywords

Navigation