Skip to main content
Log in

Rangewide genetic analysis of Lesser Prairie-Chicken reveals population structure, range expansion, and possible introgression

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The distribution of the Lesser Prairie-Chicken (Tympanuchus pallidicinctus) has been markedly reduced due to loss and fragmentation of habitat. Portions of the historical range, however, have been recolonized and even expanded due to planting of conservation reserve program (CRP) fields that provide favorable vegetation structure for Lesser Prairie-Chickens. The source population(s) feeding the range expansion is unknown, yet has resulted in overlap between Lesser and Greater Prairie-Chickens (T. cupido) increasing the potential for hybridization. Our objectives were to characterize connectivity and genetic diversity among populations, identify source population(s) of recent range expansion, and examine hybridization with the Greater Prairie-Chicken. We analyzed 640 samples from across the range using 13 microsatellites. We identified three to four populations corresponding largely to ecoregions. The Shinnery Oak Prairie and Sand Sagebrush Prairie represented genetically distinct populations (F ST > 0.034 and F ST > 0.023 respectively). The Shortgrass/CRP Mosaic and Mixed Grass ecoregions appeared admixed (F ST = 0.009). Genetic diversity was similar among ecoregions and N e ranged from 142 (95 % CI 99–236) for the Shortgrass/CRP Mosaic to 296 (95 % CI 233–396) in the Mixed Grass Prairie. No recent migration was detected among ecoregions, except asymmetric dispersal from both the Mixed Grass Prairie and to a lesser extent the Sand Sagebrush Prairie north into adjacent Shortgrass/CRP Mosaic (m = 0.207, 95 % CI 0.116–0.298, m = 0.097, 95 % CI 0.010–0.183, respectively). Indices investigating potential hybridization in the Shortgrass/CRP Mosaic revealed that six of the 13 individuals with hybrid phenotypes were significantly admixed suggesting hybridization. Continued monitoring of diversity within and among ecoregions is warranted as are actions promoting genetic connectivity and range expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bain MR, Farley GH (2002) Display by apparent hybrid prairie-chickens in a zone of geographic overlap. Condor 104:683–687

    Article  Google Scholar 

  • Bateson ZW, Whittingham LA, Johnson JA, Dunn PO (2015) Contrasting patterns of selection and drift between two categories of immune genes in prairie-chickens. Mol Ecol 24:6095–6106

    Article  CAS  PubMed  Google Scholar 

  • Behney AC, Grisham BA, Boal CW et al (2012) Sexual selection and mating chronology of lesser prairie-chickens. Wilson J Ornithol 124:96–105

    Article  Google Scholar 

  • Benedict NG, Oyler-McCance SJ, Taylor SE et al (2003) Evaluation of the Eastern (Centrocercus urophasianus urophasianus) and Western (Centrocercus urophasianus phaios) subspecies of sage-grouse using mitochondrial control-region sequence data. Conserv Genet 4:301–310

    Article  CAS  Google Scholar 

  • Bollmer JL, Ruder EA, Johnson JA et al (2011) Drift and selection influence geographic variation at immune loci of prairie-chickens. Mol Ecol 20:4695–4706

    Article  PubMed  Google Scholar 

  • Bouzat JL, Johnson K (2004) Genetic structure among closely spaced leks in a peripheral population of lesser prairie-chickens. Mol Ecol 13:499–505

    Article  PubMed  Google Scholar 

  • Bouzat JL, Cheng HH, Lewin HA et al (1998) Genetic evaluation of a demographic bottleneck in the greater prairie chicken. Conserv Biol 12:836–843

    Article  Google Scholar 

  • Bouzat JL, Johnson JA, Toepfer JE et al (2009) Beyond the beneficial effects of translocations as an effective tool for the genetic restoration of isolated populations. Conserv Genet 10:191–201

    Article  Google Scholar 

  • Brennan LA, Kuvlesky WP (2005) North American grassland birds: an unfolding conservation crisis? J Wildl Manag 69:1–13

    Article  Google Scholar 

  • Buerkle CA (2005) Maximum-likelihood estimation of a hybrid index based on molecular markers. Mol Ecol Notes 5:684–687

    Article  CAS  Google Scholar 

  • Bush KL, Aldridge CL, Carpenter JE et al (2010) Birds of a feather do not always lek together: genetic diversity and kinship structure of greater sage-grouse (Centrocercus urophasianus) in Alberta. Auk 127:343–353

    Article  Google Scholar 

  • Caizergues A, Dubois S, Mondor G et al (2001) Genetic structure of black grouse (Tetrao tetrix) populations of the French Alps. Genet Sel Evol 33:S177–S191

    Google Scholar 

  • Caizergues A, Rätti O, Helle P et al (2003) Population genetic structure of male black grouse (Tetrao tetrix L.) in fragmented vs. continuous landscapes. Mol Ecol 12:2297–2305

    Article  PubMed  Google Scholar 

  • Cheng HH, Levin I, Vallejo RL et al (1995) Development of a genetic map of the chicken with markers of high utility. Poult Sci 74:1855–1874

    Article  CAS  PubMed  Google Scholar 

  • Corman KS (2011) Conservation and landscape genetics of Texas lesser prairie-chicken: population structure and differentiation, genetic variability, and effective size. Texas A&M University, Kingsville

    Google Scholar 

  • Do C, Waples RS, Peel D et al (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14:209–214

    Article  CAS  PubMed  Google Scholar 

  • Dunn PO, Braun CE (1985) Natal dispersal and lek fidelity of sage grouse. Auk 102:621–627

    Google Scholar 

  • Earl DA, VonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Eimes JA, Bollmer JL, Whittingham LA et al (2011) Rapid loss of MHC class II variation in a bottlenecked population is explained by drift and loss of copy number variation. J Evol Biol 24:1847–1856

    Article  CAS  PubMed  Google Scholar 

  • Elmore D, Bidwell T, Ranft R, Wolfe D (2009) Habitat evaluation guide for the lesser prairie-chicken. Oklahoma State University, Stillwater

    Google Scholar 

  • Epperson BK (2004) Multilocus estimation of genetic structure within populations. Theor Popul Biol 65(3):227–237

    Article  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Faubet P, Waples R, Gaggiotti O (2007) Evaluating the performance of a multilocus Bayesian method for the estimation of migration rates. Mol Ecol 16:1149–1166

    Article  PubMed  Google Scholar 

  • Fields TL, White GC, Gilgert WC, Rodgers RD (2006) Nest and brood survival of lesser prairie-chickens in west central Kansas. J Wildl Manag 70:931–938

    Article  Google Scholar 

  • Fike JA, Oyler-McCance SJ, Zimmerman SJ et al (2015) Development of 13 microsatellites for Gunnison Sage-Grouse (Centrocercus minimus) using next-generation shotgun sequencing and their utility in greater sage-grouse (Centrocercus urophasianus). Conserv Genet Resour 7:211–214

    Article  Google Scholar 

  • Frankham R, Ballou JD, Eldridge MDB et al (2011) Predicting the probability of outbreeding depression. Conserv Biol 25:465–475

    Article  PubMed  Google Scholar 

  • Galla SJ, Johnson JA (2015) Differential Differential introgression and effective size of marker type influence phylogenetic inference of a recently divergent avian group (Phasianidae: Tympanuchus). Mol Phylogenet Evol 84:1–14

    Article  PubMed  Google Scholar 

  • Garton EO, Hagen CA, Beauprez GM et al (2016) Population dynamics of the lesser prairie-chicken. In: Haukos DA, Boal CW (eds) Ecology and conservation of lesser prairie-chickens. Studies in Avian Biology, Berkley, CA, USA

  • Gibson RM, Pires D, Delaney KS, Wayne RK (2005) Microsatellite DNA analysis shows that greater sage grouse leks are not kin groups. Mol Ecol 14:4453–4459

    Article  CAS  PubMed  Google Scholar 

  • Giesen KM, Braun CE (1993) Natal disperal and recruitment of juvenile white-tailed ptarmigan in Colorado. J Wildl Manag 57:72–77

    Article  Google Scholar 

  • Giesen KM, Hagen CA (2005) Lesser prairie-chicken (Tympanuchus pallidicinctus). In: Poole A (ed) The birds of North America. Cornell Lab of Ornithology, Ithaca

    Google Scholar 

  • Gilpin M, Hanski I (1991) Metapopulation dynamics: empirical and theoretical investigations. Academic Press, London

    Google Scholar 

  • Goldberg TL, Grant EC, Inendino KR et al (2005) Increased infectious disease susceptibility resulting from outbreeding depression. Conserv Biol 19:455–462

    Article  Google Scholar 

  • Gompert Z, Alex Buerkle C (2010) Introgress: a software package for mapping components of isolation in hybrids. Mol Ecol Resour 10:378–384

    Article  CAS  PubMed  Google Scholar 

  • Goudet J (1995) FSTAT (Version1.2). A computer program to calculate F-statistics. J Hered 86:485–486

    Google Scholar 

  • Guillot G, Mortier F, Estoup A (2005) GENELAND: a computer package for landscape genetics. Mol Ecol Notes 5:712–715

    Article  CAS  Google Scholar 

  • Guo SW, Thompson EA (1992) Performing the exact test of Hardy–Weinberg proportion for multiple alleles. Biometrics 48:361–372

    Article  CAS  PubMed  Google Scholar 

  • Hagen CA, Elmore D (2016) Conclusions, synthesis, and future directions. In: Haukos DA, Boal CW (eds) Ecology and conservation of lesser prairie-chickens. Studies in Avian Biology, Berkley, CA, USA

  • Hagen CA, Pitman JC, Sandercock BK et al (2005) Age-specific variation in apparent survival rates of male lesser prairie-chicken. Condor 107:78–86

    Article  Google Scholar 

  • Hagen CA, Pitman JC, Sandercock BK et al (2007) Age-specific survival and probable causes of mortality in female lesser prairie-chickens. J Wildl Manag 71:518–525

    Article  Google Scholar 

  • Hagen CA, Pitman JC, Sandercock BK et al (2010) Regional variation in mtDNA of the lesser prairie-chicken. Condor 112:29–37

    Article  Google Scholar 

  • Hagen CA, Pitman JC, Loughin TM et al (2011) Impacts of anthropogenic features on habitat use by lesser prairie-chickens. In: Sandercock B, Martin K, Segelbacher G (eds) Ecology, conservation, and mangement of grouse, 39th edn. University of California Press, Berkely, pp 63–75

    Google Scholar 

  • Hanski I (1998) Metapopulation dynamics. Nature 396:41–49

    Article  CAS  Google Scholar 

  • Hardy OJ, Vekemans X (1999) Isolation by distance in a continuous population: reconciliation between spatial autocorrelation analysis and population genetics models. Heredity 83:145–154

    Article  PubMed  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyze spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  CAS  Google Scholar 

  • Hellberg ME (1994) Relationships between inferred levels of gene flow and geographic distance in a philopatric coral, Balanophyllia elegans. Evolution 48:1829–1854

    Article  Google Scholar 

  • Höglund J, Alatalo RV, Lundberg A et al (1999) Microsatellite markers reveal the potential for kin selection on black grouse leks. Proc R Soc Lond Biol Sci 266:813–816

    Article  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genet 6:13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson JA, Dunn PO (2006) Low genetic variation in the Heath Hen prior to extinction and implications for the conservation of prairie-chicken populations. Conserv Genet 7:37–48

    Article  Google Scholar 

  • Johnson JA, Toepfer JE, Dunn PO (2003) Contrasting patterns of mitochondrial and microsatellite population structure in fragmented populations of greater prairie-chickens. Mol Ecol 12:3335–3347

    Article  CAS  PubMed  Google Scholar 

  • Johnson JA, Bellinger MR, Toepfer JE, Dunn P (2004) Temporal changes in allele frequencies and low effective population size in greater prairie-chickens. Mol Ecol 13:2617–2630

    Article  CAS  PubMed  Google Scholar 

  • Kahn N, St John J, Quinn T (1998) Chromosome-specific intron size differences in the avian CHD gene provide an efficient method for sex identification in birds. Auk 115:1074–1078

    Article  Google Scholar 

  • Laikre L, Allendorf FW, Aroner LC et al (2010) Neglect of genetic diversity in implementation of the convention on biological diversity. Conserv Biol 24:86–88

    Article  PubMed  Google Scholar 

  • Lebigre C, Alatalo RV, Forss HE, Siitari H (2008) Low levels of relatedness on black grouse leks despite male philopatry. Mol Ecol 17:4512–4521

    Article  CAS  PubMed  Google Scholar 

  • Lynch M (1991) The genetic interpretation of inbreeding depression and outbreeding depression. Evol 45:622–629

    Article  Google Scholar 

  • McDonald L, Beauprez G, Gardner G et al (2014) Range-wide population size of the lesser prairie-chicken: 2012 and 2013. Wildl Soc Bull 38:536–546

    Article  Google Scholar 

  • McKelvey KS, Schwartz MK (2005) DROPOUT: a program to identify problem loci and samples for noninvasive genetic samples in a capture-mark-recapture framework. Mol Ecol Notes 5:716–718

    Article  CAS  Google Scholar 

  • Meirmans PG (2014) Nonconvergence in Bayesian estimation of migration rates. Mol Ecol Resour 14:726–733

    Article  PubMed  Google Scholar 

  • Moran PA (1950) Notes on continuous stochastic phenomena. Biometrika 37:17–23

    Article  CAS  PubMed  Google Scholar 

  • Morrison S, Reynolds MD (2006) Where to draw the line: integrating feasibility into connectivity planning. In: Crooks KR, Sanjavan M (eds) Connectivity conservation. Cambridge University Press, New York, pp 536–554

    Chapter  Google Scholar 

  • Narum SR (2006) Beyond bonferroni: less conservative analyses for conservation genetics. Conserv Genet 7:783–787

    Article  CAS  Google Scholar 

  • Nooker JK, Sandercock BK (2008) Phenotypic correlates and survival consequences of male mating success in lek-mating greater prairie-chickens (Tympanuchus cupido). Behav Ecol Sociobiol 62:1377–1388

    Article  Google Scholar 

  • Noon BR, Wiens J, Van Horne B (2003) Integrating landscape structure and scale into natural resource management. In: Liu J, Taylor WW (eds) Integrating landscape ecology into natural resource management. Cambridge University Press, Cambridge, pp 23–67

    Google Scholar 

  • Oyler-McCance SJ, John JS (2010) Characterization of small microsatellite loci for use in non invasive sampling studies of Gunnison Sage-Grouse (Centrocercus minimus). Conserv Genet Resour 2:17–20

    Article  Google Scholar 

  • Oyler-McCance SJ, Kahn NW, Burnham KP et al (1999) A population genetic comparison of large- and small-bodied sage grouse in Colorado using microsatellite and mitochondrial DNA markers. Mol Ecol 8:1457–1465

    Article  CAS  PubMed  Google Scholar 

  • Oyler-McCance SJ, Taylor SE, Quinn TW (2005a) A multilocus population genetic survey of the greater sage-grouse across their range. Mol Ecol 14:1293–1310

    Article  CAS  PubMed  Google Scholar 

  • Oyler-McCance SJ, St John J, Taylor SE et al (2005b) Population genetics of Gunnison Sage-Grouse: implications for managment. J Wildl Manag 69:630–637

    Article  Google Scholar 

  • Oyler-McCance SJ, Casazza ML, Fike JA, Coates PS (2014) Hierarchical spatial genetic structure in a distinct population segment of greater sage-grouse. Conserv Genet 15:1313–1314

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenALEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piertney SB, Höglund J (2001) Polymorphic microsatellite DNA markers in black grouse (Tetrao tetrix). Mol Ecol Resour 1:303–304

    Article  CAS  Google Scholar 

  • Piertney SB, MacColl ADC, Bacon PJ, Dallas JF (1998) Local genetic structure in red grouse (Lagopus lagopus scoticus): evidence from microsatellite DNA markers. Mol Ecol 7:1645–1654

    Article  CAS  PubMed  Google Scholar 

  • Pitman JC, Jamison BE, Hagen CA et al (2006) Brood break-up and juvenile dispersal of lesser prairie-chicken. Prairie Nat 38:85–99

    Google Scholar 

  • Press A, Snyder JW, Pelren EC, Crawford JA (2013) Translocation histories of prairie grouse in the United States. Wildl Soc Bull 27:428–432

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pruett CL, Patten MA, Wolfe DH (2009) Avoidance behavior by prairie grouse: implications for development of wind energy. Conserv Biol 23:1253–1259

    Article  PubMed  Google Scholar 

  • Pruett CL, Johnson JA, Larsson LC et al (2011) Low effective population size and survivorship in a grassland grouse. Conserv Genet 12:1205–1214

    Article  Google Scholar 

  • Pyron RA, Costa GC, Patten MA, Burbrink FT (2015) Phylogenetic niche conservatism and the evolutionary basis of ecological speciation. Biol Rev 90:1248–1262

    Article  PubMed  Google Scholar 

  • Ripper D, McLachlan M, Toombs T, Ver Cauteren T (2008) Assessment of conservation reserve program fields within the current distribution of lesser prairie-chicken. Gt Plains Res 18:205–218

    Google Scholar 

  • Robel RJ (1970) Possible role of behavior in regulating greater prairie chicken populations. J Wildl Manag 34:306–312

    Article  Google Scholar 

  • Rodgers RD, Hoffman RW (2005) Prairie grouse population response to conservation resesrve grasslands: an overview. In: Allen AW, Vandever MW (eds) The conservation reserve program—planting for the future: proceedings of a national conference. Fort Collins, CO, USA, pp 120–128

  • Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Row JR, Oyler-McCance SJ, Fike JA et al (2015) Landscape characteristics influencing the genetic structure of greater sage-grouse within the stronghold of their range: a holistic modeling approach. Ecol Evol 5:1955–1969

    Article  PubMed  PubMed Central  Google Scholar 

  • Schroeder MA, Braun CE (1993) Partial migrations in a population of greater prairie-chickens in northeartern Colorado. Auk 110:21–28

    Google Scholar 

  • Schulwitz S, Bedrosian B, Johnson JA (2014) Low neutral genetic diversity in isolated greater sage-grouse (Centrocercus urophasianus) populations in northwest Wyoming. Condor 116:560–573

    Article  Google Scholar 

  • Schwartz MK, Luikart G, Waples RS (2007) Genetic monitoring as a promising tool for conservation and management. Trends Ecol Evol 22:25–33

    Article  PubMed  Google Scholar 

  • Segelbacher G, Paxton RJ, Steinbruck G et al (2000) Characterization of nicrosatellites in capercaillie Tetrao urogallus (AVES). Mol Ecol 9:1934–1935

    Article  CAS  PubMed  Google Scholar 

  • Sokal RR, Oden NL (1978) Spatial autocorrelation in biology 1. Methodology. Biol J Linn Soc 10:199–228

    Article  Google Scholar 

  • Soule M, Mills LS (1998) No need to isolate genetics. Science 282:1658–1659

    Article  Google Scholar 

  • Stiver JR, Apa AD, Remington TE, Gibson RM (2008) Polygyny and female breeding failure reduce effective population size in the lekking Gunnison Sage-Grouse. Biol Conserv 141:472–481

    Article  Google Scholar 

  • USFWS (1966) Rare and endangered fish and wildlife of the United States. U.S. Department of the Interior/Bureau of sport fisheries and wildlife, Resource publication 34, p 19

  • USFWS (2012) Endangered and threatened wildlife and plants; listing the lesser praire-chicken as a threatened species. Fed Reg 77:73827–73888

    Google Scholar 

  • USFWS (2014) Endangered and threatened wildlife and plants; determination of threatened status for the lesser prairie-chicken. Fed Reg 79:19974–20071

    Google Scholar 

  • Van den Bussche RA, Hoofer SR, Weidenfeld DA et al (2003) Genetic variation within and among frangemented populatins of lesser prairie-chickens (Tympanuchus pallidicinctus). Mol Ecol 12:675–683

    Article  Google Scholar 

  • Van Pelt WE, Kyle S, Pitman J et al (2013) The lesser prairie-chicken range-wide conservation plan. Western Association of Wildlife Agencies, Cheyenne, p 367

    Google Scholar 

  • Waples RS, Do C (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour 8:753–756

    Article  PubMed  Google Scholar 

  • Warren P, Baines D (2002) Dispersal, survival and causes of mortality in black grouse Tetrao tetrix in northern England. Wildl Biol 8:91–97

    Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Westemeier RL, Brawn JD, Simpson SA et al (1998) Tracking the long-term decline and recovery of an isolated population. Science 282:1695–1698

    Article  CAS  PubMed  Google Scholar 

  • Wiens JJ, Graham CH (2005) NICHE CONSERVATISM: integrating evolution, ecology, and conservation biology. Annu Rev Ecol Evol Syst 36:519–539

    Article  Google Scholar 

  • Wiens JJ, Ackerly DD, Allen AP et al (2010) Niche conservatism as an emerging principle in ecology and conservation biology. Ecol Lett 13:1310–1324

    Article  PubMed  Google Scholar 

  • Wiley RH (1973) Territoriality and non-random mating in sage grouse, Centrocercus urophasianus. Anim Behav Monogr 6:85–99

    Article  Google Scholar 

  • Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 1191:1177–1191

    Google Scholar 

  • Winder VL, Carrlson KM, Gregory AJ et al (2015) Factors affecting female space use in ten populations of prairie chickens. Ecosphere 6:166

    Article  Google Scholar 

  • Woodward AJW, Fuhlendorf SD, Leslie DM, Shackford J (2001) Influence of landscape composition and change on lesser prairie-chicken (Tympanuchus pallidicinctus) populations. Am Midl Nat 145:261–274

    Article  Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28:114–138

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the numerous landowners and field technicians who contributed to sample collection for this project. We are grateful to Matt Bain and Tamara Fields for collection of blood and morphometric samples for the hybrids. We thank Colorado Parks and Wildlife, Kansas Department of Wildlife, Parks, and Tourism, New Mexico Department of Game and Fish, Oklahoma Department of Wildlife Conservation, and Texas Parks and Wildlife for their input and support. Funding for this project was provided by the U.S. Geological Survey. Support for C. A. Hagen was provided by Grant Agreement #J1730A between Oregon State University and Pheasants Forever. The Sutton Avian Research Center gratefully acknowledges support from federal and state agencies, corporate and private foundations, and private individuals. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara J. Oyler-McCance.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oyler-McCance, S.J., DeYoung, R.W., Fike, J.A. et al. Rangewide genetic analysis of Lesser Prairie-Chicken reveals population structure, range expansion, and possible introgression. Conserv Genet 17, 643–660 (2016). https://doi.org/10.1007/s10592-016-0812-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-016-0812-y

Keywords

Navigation