Skip to main content
Log in

Species delimitation tests of endemic Lepidium papilliferum and identification of other possible evolutionarily significant units in the Lepidium montanum complex (Brassicaceae) of western North America

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Lepidium papilliferum of southwest Idaho was previously treated as an infraspecific variety of Lepidium montanum. Chloroplast (cpDNA) sequences, nuclear ribosomal internal transcribed spacer (ITS) sequences, and AFLPs were used to test species delimitations and other possible evolutionarily significant units (ESU) based on genetic differentiation, isolation by distance (IBD), and genetic admixture among 32 L. montanum and 21 L. papilliferum collections from the western US. The L. papilliferum AFLP genotypes formed a monophyletic clade. However, the AFLP genotypes of L. montanum samples from eight western sites were more similar to L. papilliferum, which together comprise a regionally significant West clade showing significant differentiation from eastern L. montanum collections (East clade). Bayesian analysis of AFLP genotypes detected possible admixture between L. papilliferum and related western L. montanum collections. Neither taxa nor regionally significant AFLP clades displayed reciprocally monophyletic cpDNA or ITS sequences, but the AFLP clades showed stronger cpDNA differentiation and unique ITS alleles. The East and West clades fit models of speciation with relatively strong IBD within groups and weak IBD between groups, based on correlations between the average number of AFLP differences and geographic distances among collection sites, but comparisons between taxa did not fit this model. Conversely, relatively strong partial correlations between AFLP and taxonomic differences, controlling for geography, support taxonomic delimitations. Results suggest that L. papilliferum is a distinct subgroup of L. montanum influenced by speciation. However, gene flow or common ancestry between L. papilliferum and western forms of L. montanum provide a basis for other possible ESUs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Álvarez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Mol Phylogenet Evol 29:417–434

    Article  PubMed  Google Scholar 

  • Avise JC, Neigle JE, Arnold J (1984) Demographic influences on mitochondrial DNA lineage survivorship in animal populations. J Mol Evol 20:99–105

    Article  CAS  PubMed  Google Scholar 

  • Baldwin BG (1992) Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the Compositae. Mol Phylogenet Evol 1:3–16

    Article  CAS  PubMed  Google Scholar 

  • Baldwin BG, Sanderson MJ, Porter JM, Wojciechowski MF, Campbell CS, Donoghue MJ (1995) The ITs region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann Missouri Bot Gard 82:247–277

    Article  Google Scholar 

  • Bohonak AJ, Davies N, Roderick GK, Villablanca F (1998) Is population genetics mired in the past? Trends Ecol Evol 13:360

    Article  Google Scholar 

  • Bossert JL, Prowell DP (1998) Genetic estimates of population structure and gene flow: limitations, lessons and new directions. TREE 13:202–205

    Google Scholar 

  • Bowman JL, Brüggemann H, Lee JY, Mummenhoff K (1999) Evolutionary changes in floral structure within Lepidium L. (Brassicaceae). Int J Plant Sci 160:917–929

    Article  PubMed  Google Scholar 

  • Bulgin NL, Gibbs HL, Vickery P, Baker AJ (2003) Ancestral polymorphisms in genetic markers obscure detection of evolutionarily distinct populations in the endangered Florida grasshopper sparrow (Ammodramus savannarum floridanus). Mol Ecol 12:8331–8844

    Article  Google Scholar 

  • Clark AG (1990) Inference of haplotypes from PCR-amplified samples of diploid populations. Mol Biol Evol 72:111–122

    Google Scholar 

  • Culumber CM (2007) DNA barcoding of western North American taxa Leymus (Poaceae) and Lepidium (Brassicaceae). MS thesis, Utah State University

  • Davis RJ (1952) Flora of Idaho. Brigham Young University Press, Provo, Utah, p 347

    Google Scholar 

  • Despres L, Gielly L, Redoutet W, Taberlet P (2003) Using AFLP to resolve phylogenetic relationships in a morphologically diversified plant species complex when nuclear and chloroplast sequences fail to reveal variability. Mol Phylogenet Evol 27:185–196

    Article  CAS  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    Article  CAS  PubMed  Google Scholar 

  • Good DA, Wake DB (1992) Geographic variation and speciation in the torrent salamanders of the genus Rhyacotriton (Caudata: Rhyacotritonidae). Univ Calif Publ Zool 126:1–91

    Google Scholar 

  • Hitchcock CL (1950) On the subspecies of Lepidium montanum. Madroño 10:155–158

    Google Scholar 

  • Holmgren NH, Holmgren PK, Cronquist A (2005) Intermountain flora, vascular plants of the intermountain west, USA, vol 2, Part B, Subclass Dilleniideae. The New York Botanical Garden Press, New York

  • Hutchison DW, Templeton AR (1999) Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53:1898–1914

    Article  Google Scholar 

  • Jakob SS, Blattner FR (2006) A chloroplast genealogy of Hordeum (Poaceae): long-term persisting haplotypes, incomplete lineage sorting, regional extinction, and the consequences for phylogenetic inference. Mol Biol Evol 23:1602–1612

    Article  CAS  PubMed  Google Scholar 

  • Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genet 6:13

    Article  PubMed  Google Scholar 

  • Jones TA, Larson SR, Wilson BL (2008) Genetic differentiation and admixture among Festuca idahoensis, F. roemeri, and F. ovina detected in AFLP, ITS, and cpDNA. Bot 86:422–434

    Article  CAS  Google Scholar 

  • Jump AS, Woodward FI, Burke T (2003) Cirsium species show disparity in patterns of genetic variation at their range-edge, despite similar patterns of reproduction and isolation. New Phytol 160:359–370

    Article  CAS  Google Scholar 

  • Kimura M (1981) Estimation of evolutionary distances between homologous nucleotide sequences. Proc Natl Acad Sci USA 78:454–458

    Article  CAS  PubMed  Google Scholar 

  • Koopman WJM (2005) Phylogenetic signal in AFLP data sets. Syst Biol 54:197–217

    Article  PubMed  Google Scholar 

  • Koopman WJM, Wisseman V, Cock KD, Huylenbroeck JV, Riek JD, Sabatino GJH, Visser D, Vosman B, Ritz CM, Maes B, Werlemark G, Nybom H, Debener T, Linde M, Smulders MJM (2008) AFLP markers as a tool to reconstruct complex relationships: a case study in Rosa (Rosaceae). Am J Bot 95:353–366

    Article  CAS  Google Scholar 

  • Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH (2005) Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci USA 102:8369–8374

    Article  CAS  PubMed  Google Scholar 

  • Kropf M, Kadereit JW, Comes HP (2002) Late Quaternary distributional stasis in the submediterranean mountain plant Anthyllis montana L. (Fabaceae) inferred from ITS sequences and amplified fragment length polymorphism markers. Mol Ecol 11:447–463

    Article  CAS  PubMed  Google Scholar 

  • Lee JY, Mummenhoff K, Bowman JL (2002) Allopolyploidization and evolution of species with reduced floral structures in Lepidium L. (Brassicaceae). Proc Natl Acad Sci USA 99:16835–16840

    Article  CAS  PubMed  Google Scholar 

  • Leonard AC, Franson SD, Hertzberg VS, Smith MK, Toth GP (1999) Hypothesis testing with the similarity index. Mol Ecol 8:2105–2114

    Article  CAS  PubMed  Google Scholar 

  • Lexer C, Kremer A, Petit RJ (2006) Shared alleles in sympatric oaks: recurrent gene flow is a more parsimonious explanation than ancestral polymorphism. Mol Ecol 15:2007–2012

    Article  CAS  PubMed  Google Scholar 

  • Manel S, Gaggiotti OE, Waples RS (2005) Assignment methods: matching biological questions with appropriate techniques. Trends Ecol Evol 20:136–142

    Article  PubMed  Google Scholar 

  • Meyer SD, Allen PS (2005) Lepidium papilliferum soil and seed bank characterization on the orchard training area. US Forest Service, Intermountain Research Station, Shrub Sciences Laboratory, Brigham Young University, Provo, Utah

    Google Scholar 

  • Meyer SD, Quinney D, Weaver J (2006) A stochastic population model for Lepidium papilliferum (Brassicaceae), a rare desert ephemeral with a persistent seed bank. Am J Bot 93:891–902

    Article  Google Scholar 

  • Modliszewski JL, Thomas DT, Fan C, Crawford DJ, DePamphilis CW, Xiang Q-YJ (2006) Ancestral chloroplast polymorphism and historical secondary contact in a broad hybrid zone of Aesculus (Sapindaceae). Am J Bot 93:377–388

    Article  CAS  Google Scholar 

  • Moritz C (1994) Defining ‘evolutionarily significant units’ for conservation. TREE 9:373–375

    Google Scholar 

  • Moyle LC (2006) Correlates of genetic differentiation and isolation by distance in 17 congeneric Silene species. Mol Ecol 15:1067–1081

    Article  CAS  PubMed  Google Scholar 

  • Muir G, Schlötterer C (2005) Evidence for shared ancestral polymorphisms rather than recurrent gene flow at microsatellite loci differentiating two hybridizing oaks (Quercus spp.). Mol Ecol 14:549–561

    Article  CAS  PubMed  Google Scholar 

  • Mummenhoff K, Linder P, Friesen N, Bowman JL, Lee JY, Franzke A (2004) Molecular evidence for biocontinentaly hybridogenous genomic constitution in Lepidium sensu stricto (Brassicaceae) species from Australia and New Zealand. Am J Bot 91:254–261

    Article  CAS  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    Article  CAS  PubMed  Google Scholar 

  • Neigel JE, Avise JC (1986) Phylogenetic relationships of mitochondrial DNA under various demographic models of speciation. In: Nevo E, Karlin S (eds) Evolutionary processes and theory. Academic Press, New York, pp 515–534

    Google Scholar 

  • Ouborg NJ, Piquot Y, Van Groenendael JM (1999) Population genetics, molecular markers and the study of dispersal in plants. J Ecol 87:551–568

    Article  Google Scholar 

  • Petit R, Duminil J, Fineschi S et al (2005) Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Mol Ecol 14:689–701

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  Google Scholar 

  • Puorto G, Salomão M, Graca Da, Theakston RDG, Thorpe RS, Warrell DA, Wűster W (2001) Combining mitochondrial DNA sequences and morphological data to infer species boundaries: phylogeography of lanceheaded pitvipers in the Brazilian Atlantic forest, and the status of Bothrops pradoi (Squamata: Serpentes: Viperideae). J Evol Biol 14:527–538

    Article  CAS  Google Scholar 

  • Rollins RC (1993) The Cruciferae of continental North America. Stanford University Press, USA

    Google Scholar 

  • Rollins RC, Rudenberg L (1977) Chromosome numbers of Cruciferae III. Contrib Gray Herb Harvard Univ 207:101–116

    Google Scholar 

  • Scotti I, Vendramin GG, Matteotti LS, Sarponi C, Sari-Gorla M, Binelli G (2000) Postglacial recononization routes for Piceae abies K. in Italy as suggested by the analysis of sequence-characterized amplified region (SCAR) markers. Mol Ecol 9:699–708

    Article  CAS  PubMed  Google Scholar 

  • Shaw J, Lickey EB, Beck JT, Farmer SB, Liu W, Miller J, Siripun KC, Winder CT, Schilling EE, Small RL (2005) The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am J Bot 92:142–166

    Article  CAS  Google Scholar 

  • Sites JW, Marshall JC (2003) Delimiting species: a Renaissance issue in systematic biology. Trends Ecol Evol 18:462–469

    Article  Google Scholar 

  • Sites JW, Marshall JC (2004) Operational criteria for delimiting species. Annu Rev Ecol Evol Syst 35:199–227

    Article  Google Scholar 

  • Slatkin M (1985) Rare alleles as indicators of gene flow. Evolution 39:53–65

    Article  Google Scholar 

  • Slatkin M (1993) Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47:264–279

    Article  Google Scholar 

  • Stillman AJ (2006) Population genetics and mating system of the rare polyploid Lepidium papilliferum (Brassicaceae), a southwestern Idaho endemic. MS thesis, Boise State University

  • Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of cpDNA. Plant Mol Biol 17:1105–1109

    Article  CAS  PubMed  Google Scholar 

  • US Fish and Wild life Service (2006) Draft best available biological information for slickspot peppergrass (Lepidium papilliferum). Snake River Fish and Wildlife Office, Boise, Idaho

    Google Scholar 

  • US Fish and Wild life Service (2007) Endangered and threatened wildlife and plants; withdrawl of proposed rule to list Lepidium palliferum (slickspot peppergrass). Fed Reg 72:1621–1644

    Google Scholar 

  • US Fish and Wildlife Service (1990) Endangered and threatened wildlife and plants; review of plant taxa for listing as endangered or threatened species. Fed Reg 55:6181–6229

    Google Scholar 

  • US Fish and Wildlife Service (2002) Endangered and threatened wildlife and plants; listing the plant Lepidium papilliferum (slickspot peppergrass) as endangered. Fed Reg 67:46441–46450

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Van De Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  PubMed  Google Scholar 

  • Waples RS (1991) Pacific salmon, Oncorhynchus spp., and the definition of ‘species’ under the endangered species act. Mar Fish Rev 53:11–22

    Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, California, pp 315–322

    Google Scholar 

  • Whitlock MC, McCauley DE (1999) Indirect measures of gene flow and migration: FST ≠ 1/(4Nm + 1). Heredity 82:117–125

    Article  PubMed  Google Scholar 

  • Wolfe KH, Li W-H, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058

    Article  CAS  PubMed  Google Scholar 

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159

    CAS  PubMed  Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28:139–156

    CAS  PubMed  Google Scholar 

  • Wright S (1978) Evolution and the genetics of populations, Vol. 4. Variability within and among natural populations. University of Chicago Press, Chicago, IL, USA

    Google Scholar 

  • Wu X-L, Larson SR, Hu Z-M, Palazzo AJ, Jones TA, Wang RR-C, Jensen KB, Chatterton NJ (2003) Molecular genetic linkage maps for allotetraploid Leymus wildryes (Gramineae: Triticeae). Genome 46:627–646

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven R. Larson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 31 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larson, S.R., Culumber, C.M., Schweigert, R.N. et al. Species delimitation tests of endemic Lepidium papilliferum and identification of other possible evolutionarily significant units in the Lepidium montanum complex (Brassicaceae) of western North America. Conserv Genet 11, 57–76 (2010). https://doi.org/10.1007/s10592-009-0002-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-009-0002-2

Keywords

Navigation