Skip to main content
Log in

Extreme isolation by distance in a montane frog Rana cascadae

  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Given the recent interest in declining amphibian populations, it is surprising that there are so few data on genetic drift and gene flow in anuran species. We used seven microsatellite loci to investigate genetic structure and diversity at both large and small geographic scales, and to estimate gene flow in the Cascades frog, Rana cascadae. We sampled 18 sites in a hierarchical design (inter-population distances ranging from 1–670 km) to test for isolation by distance and to determine the geographic scale over which substantial gene flow occurs. Eleven of these sites were sampled as three fine-scale clusters of three, three, and five sites separated by pairwise distances of 1–23 km to estimate number of migrants exchanged per generation via F ST and by a coalescent approach. We found R. cascadae exhibits a strong pattern of isolation by distance over the entire species range, and that there is a sharp drop in migrants exchanged between sites separated by greater than 10 km. These data, in conjunction with results of other recent studies, suggest that montane habitats promote unusually strong genetic isolation among frog populations. We discuss our results in light of future management and conservation of R. cascadae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allendorf FW, Phelps SR (1981) Use of allelic frequencies to describe population structure. Can. J. Fish. Aquat. Sci., 38, 1507–1514.

    Google Scholar 

  • Beerli P (1997–2001) MIGRATE:documentation and program, part of LAMARC. Version 1. 5. 1.

  • Beerli P, Felsenstein J (1999) Maximum likelihood estimation of migration rates and population numbers of two popula-tions using a coalescent approach. Genetics, 152, 763–773.

    Google Scholar 

  • Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations using a coalescent approach. Proc. Natl. Acad. Sci. USA, 98, 4563–4568.

    Google Scholar 

  • Berven K, Grudzien T (1990) Dispersal in the wood frog (Rana sylvatica ):Implications for genetic population structure. Evolution, 44, 2047–2056.

    Google Scholar 

  • Blaustein A, Wake D, Sousa W (1994) Amphibian declines: Judging stability, persistence, and susceptibility of popula-tions to local and global extinctions. Conserv. Biol., 8, 60–71.

    Google Scholar 

  • Breden F (1987) The effect of post-metamorphic dispersal on the population genetic structure of Fowler 's Toad, Bufo woodhousei fowleri. Copeia, 1987, 386–395.

    Google Scholar 

  • Breden F (1988) Natural history and ecology of Fowler 's toad, Bufo woodhousei fowleri (Amphibia:Bufonidae), in the Indiana Dunes National Lakeshore. Fieldiana Zool., 49, 1–16.

    Google Scholar 

  • Burrowes P, Joglar R (1999) Population genetics of the Puerto Rican cave-dwelling frog, Eleutherodactylus cooki. J. Her-petol., 33, 706–711.

    Google Scholar 

  • Call DR (1997) Microsatellite Characteristics and Population Structure for two Anurans Rana luteiventris and Hyla regilla. PhD thesis, Washington Sate University, Pullman, WA.

    Google Scholar 

  • Castric V, Bernatchez L (2003) The rise and fall of isolation by distance in the anadromous brook charr (Salvelinus fontinalis Mitchill). Genetics, 163, 983–996.

    Google Scholar 

  • Cavalli-Sforza L, Edwards A (1967) Phylogenetic analysis: Models and estimation procedures. Evolution, 21, 550–570.

    Google Scholar 

  • Dole J (1971) Dispersal of recently metamorphosed leopard frogs, Rana pipiens. Copeia, 1971, 221–228.

    Google Scholar 

  • Driscoll D (1997) Mobility and metapopulation structure of Geocrinia alba and Geocrinia vitellina, two endangered frog species from southwestern Australia. Aust. J. Ecol., 22, 185–195.

    Google Scholar 

  • Driscoll D (1998a) Genetic structure, metapopulation processes and evolution influence the conservation strategies for two endangered frog species. Biol. Conserv., 83, 43–54.

    Google Scholar 

  • Driscoll D (1998b) Genetic structure of the frogs Geocrinia lu-teas and Geocrinia rosea reflects extreme population diver-gence and range changes, not dispersal barriers. Evolution, 52, 1147–1157.

    Google Scholar 

  • Evans B, Morales J, Picker M, Kelley D, Melnick J (1997) Comparative molecular phylogeography of two Xenopus species, X. gilli and X. laevis, in the South-Western Cape Province, South Africa. Mol. Ecol., 6, 333–343.

    Google Scholar 

  • Fellers G, Drost C (1993) Disappearance of the cascades frog Rana cascadae at the southern end of its range California USA. Biol. Conserv., 65, 177–181.

    Google Scholar 

  • Gill DE (1978) The metapopulation ecology of the red-spotted newt, Notophthalmus viridescens (Rafinesque). Ecol. Mo-nogr., 48, 145–166.

    Google Scholar 

  • Goldstein D, Linares A, Cavalli-Sforza L, Feldman M (1995) Genetic absolute dating based on microsatellites and the origin of modern humans. Proc. Natl. Acad. Sci. USA, 92, 6723–6727.

    Google Scholar 

  • Gulve PS (1994) Distribution and extinction patterns within a northern metapopulation of the pool frog, Rana lessonae. Ecology, 75, 1357–1367.

    Google Scholar 

  • Guo S, Thompson E (1992) Performing the exact test of Hardy-Weinberg proportions for multiple alleles. Biometrics, 48, 361–372.

    Google Scholar 

  • Hanski I, Gilpin M (1991) Metapopulation dynamics:Brief history and conceptual domain. Biol. J. Linn. Soc., 42, 3–16.

    Google Scholar 

  • Hillis D, Mable B, Larson A, Davis S, Zimmer E (1996) Nucleic acids IV:Sequencing and cloning. In:Molecular Systematics (eds. Hillis DM, Moritz C, Mable BK), pp. 342–343. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Hitchings S, Beebee T (1997) Genetic substructuring as a result of barriers to gene flow in urban Rana temporaria (common frog)populations:Implications for biodiversity conservation. Heredity, 19, 117–127.

    Google Scholar 

  • Hudson R (1990) Gene genealogies and the coalescent process. Oxford Surv. Evol. Biol., 7, 1–44.

    Google Scholar 

  • Hutchison D, Templeton A (1999) Correlation of pairwise genetic and geographic distance measures:Inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution, 53, 1898–1914.

    Google Scholar 

  • James C, Moritz C (2000) Intraspecific phylogeography in the sedge frog Litoria fallax (Hylidae)indicates pre-Pleistocene vicariance of an open forest species from Eastern Australia. Mol. Ecol., 9, 349–358.

    Google Scholar 

  • Kingman J (1982a) On the genealogy of large populations. In: Essays in Statistical Science (eds. Gani J, Hannan E), pp. 27–43. Applied Probability Trust, London.

    Google Scholar 

  • Kingman J (1982b) The coalescent. Stoch. Proc. Appl., 13, 235–248.

    Google Scholar 

  • Lampert K, Stanley A, Mueller G, Ryan M (2003) Fine-scale genetic pattern and evidence for sex-biased dispersal in the tungara frog, Physalaemus pustulosus. Mol. Ecol., 12, 3325–3334.

    Google Scholar 

  • Lynch M (1991) Analysis of population genetic structure by DNA fingerprinting. In:DNA Fingerprinting:Approaches and Applications (eds. Burke T, Dolf G, Jeffreys A, Wolff R), pp. 113–126. Birkhauser, Basel, Switzerland.

    Google Scholar 

  • Macey J, Schulte II J, Larson A, Fang Z, Wang Y, Tuniyev B, Papenfuss T (1998) Phylogenetic relationships of toads in the Bufo bufo species group from the Eastern escarpment of the Tibetan Plateau:A case of vicariance and dispersal. Mol. Phylogenet. Evol., 9, 80–87.

    Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res., 27, 209–220.

    Google Scholar 

  • Michalakis Y, Excoffier L (1996) A generic estimation of population subdivision using distances between alleles with special reference for microsatellite loci. Genetics, 142, 1061–1064.

    Google Scholar 

  • Monsen K, Blouin M (2003) Genetic structure in a montane ranid frog:Restricted gene flow and nuclear-mitochondrial discordance. Mol. Ecol., 12, 3257–3286.

    Google Scholar 

  • Nath H, Griffiths R (1993) The coalescent in two colonies with symmetric migration. J. Math. Biol., 31, 841–851.

    Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am. Nat., 106, 283–292.

    Google Scholar 

  • Newman R, Squire T (2001) Microsatellite variation and fine-scale population structure in the wood frog (Rana sylvatica ). Mol. Ecol., 10, 1087–1100.

    Google Scholar 

  • Notohara M(1994) The coalescent and the genealogical process in geographically structured populations. J. Math. Biol., 29, 59–75.

    Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (Version 1. 2): Population genetics software for exact tests and ecumenicism. J. Hered., 86, 248–249.

    Google Scholar 

  • Reh W, Seitz A (1990) The Influence of land use on the genetic structure of populations in the common frog Rana temporaria. Biol. Conserv., 54, 239–250.

    Google Scholar 

  • Rice W (1989) Analyzing tables of statistical tests. Evolution, 43, 223–225.

    Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-Statistics under isolation by distance. Genetics, 145, 1219–1228.

    Google Scholar 

  • Rowe G, Beebee T, Burke T (1998) Phylogeography of the natt-erjack toad Bufo calamita in Britain:Genetic differentiation of native and translocated populations. Mol. Ecol., 7, 751–760.

    Google Scholar 

  • Rowe G, Beebee TJC, Burke T (2000) A microsatellite analysis of natterjack toad, Bufo calamita, metapopulations. Oikos, 88, 641–651.

    Google Scholar 

  • Scribner K, Arntzen J, Burke T (1994) Comparative analysis of intra-and interpopulation genetic diversity in Bufo bufo, using allozyme, single-locus microsatellite, minisatellite, and mul-tilocus minisatellite data. Mol. Biol. Evol., 5, 737–748.

    Google Scholar 

  • Scribner K, Arntzen J, Burke T (1997) Effective number of breeding adults in Bufo bufo estimated from age-specific variation at minisatellite loci. Mol. Ecol., 6, 701–712.

    Google Scholar 

  • Shaffer H, Fellers G, Magee A, Voss R (2000) The genetics of amphibian declines:Population substructure and molecular differentiation in the Yosemite toad, Bufo canorus (Anura, Bufonidae)based on single-strand conformation polymor-phism analysis (SSCP)and mitochondrial DNA Sequence Data. Mol. Ecol., 9, 245–257.

    Google Scholar 

  • Slatkin M (1993) Isolation by distance in equilibrium and non-equilibrium populations. Evolution, 47, 264–279.

    Google Scholar 

  • Slatkin M(1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics, 139, 457–462.

    Google Scholar 

  • Stebbins, R (1985) A field guide to Western reptiles and amphibians. Houghton Mifflin, Boston.

    Google Scholar 

  • Storfer A (1999) Gene flow and population subdivision in the streamside salamander, Ambystoma barbouri. Copeia, 1999, 174–181.

    Google Scholar 

  • Sumida M, Allison A, Nishioka M (1998) Genetic relationships and phylogeny of Papua New Guinean hylid frogs elucidated by allozyme analysis. Jpn. J. Herpetol., 17, 164–174.

    Google Scholar 

  • Waldman B, McKinnon J (1993) Inbreeding and outbreeding in fishes, amphibians, and reptiles. In:A Natural History of Inbreeding and Outbreeding, Theoretical and Empirical Perspectives (ed. Wilmsen Thornhill N), University of Chi-cago Press, Chicago and London.

    Google Scholar 

  • Waldman B, Tocher M (1998) Behavioral ecology, genetic diversity, and declining amphibian populations. In:Behavioral Ecology and Conservation Biology (ed. Caro T), Oxford University Press, New York.

    Google Scholar 

  • Weir B, Cockerham C (1984) Estimating F-Statistics for the analysis of population structure. Evolution, 38, 1358–1370.

    Google Scholar 

  • Whitlock M, McCauley D (1999) Indirect measures of gene flow and migration:F ST does not equal 1/4 Nm +1. Heredity, 82, 117–125.

    Google Scholar 

  • Wilkinson J, Matsui M, Terachi T (1996) Geographic variation in a Japanese tree frog (Rhacophorus arboreus )revealed by PCR-aided restriction site analysis of mtDNA. J. Herpetol., 30, 418–423.

    Google Scholar 

  • Wright S (1951) The genetical structure of populations. Ann. Eugenic., 15, 323–354.

    Google Scholar 

  • Wright S (1965) The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution, 19, 395–420.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monsen, K.J., Blouin, M.S. Extreme isolation by distance in a montane frog Rana cascadae . Conservation Genetics 5, 827–835 (2004). https://doi.org/10.1007/s10592-004-1981-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-004-1981-z

Navigation