Skip to main content
Log in

Cholesky QR-based retraction on the generalized Stiefel manifold

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

When optimizing on a Riemannian manifold, it is important to use an efficient retraction, which maps a point on a tangent space to a point on the manifold. In this paper, we prove a map based on the QR factorization to be a retraction on the generalized Stiefel manifold. In addition, we propose an efficient implementation of the retraction based on the Cholesky QR factorization. Numerical experiments show that the proposed retraction is more efficient than the existing one based on the polar factorization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008)

    Book  MATH  Google Scholar 

  2. Absil, P.A., Malick, J.: Projection-like retractions on matrix manifolds. SIAM J. Optim. 22(1), 135–158 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adler, R.L., Dedieu, J.P., Margulies, J.Y., Martens, M., Shub, M.: Newton’s method on Riemannian manifolds and a geometric model for the human spine. IMA J. Numer. Anal. 22(3), 359–390 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aihara, K., Sato, H.: A matrix-free implementation of Riemannian Newton’s method on the Stiefel manifold. Optim. Lett. 11(8), 1729–1741 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bendory, T., Eldar, Y.C., Boumal, N.: Non-convex phase retrieval from STFT measurements. IEEE Trans. Inf. Theory 64(1), 467–484 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boumal, N., Absil, P.A., Cartis, C.: Global rates of convergence for nonconvex optimization on manifolds. IMA J. Numer. Anal. https://doi.org/10.1093/imanum/drx080 (2018)

  7. Boumal, N., Mishra, B., Absil, P.A., Sepulchre, R.: Manopt, a Matlab toolbox for optimization on manifolds. J. Mach. Learn. Res. 15, 1455–1459 (2014)

    MATH  Google Scholar 

  8. Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20(2), 303–353 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Imakura, A., Yamamoto, Y.: Efficient implementations of the modified Gram–Schmidt orthogonalization with a non-standard inner product. arXiv preprint arXiv:1703.10440 (2017)

  10. Kasai, H., Sato, H., Mishra, B.: Riemannian stochastic recursive gradient algorithm with retraction and vector transport and its convergence analysis. In: International Conference on Machine Learning, pp. 2521–2529 (2018)

  11. Lowery, B.R., Langou, J.: Stability analysis of QR factorization in an oblique inner product. arXiv preprint arXiv:1401.5171 (2014)

  12. Manton, J.H.: Optimization algorithms exploiting unitary constraints. IEEE Trans. Signal Process. 50(3), 635–650 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mishra, B., Sepulchre, R.: Riemannian preconditioning. SIAM J. Optim. 26(1), 635–660 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ring, W., Wirth, B.: Optimization methods on Riemannian manifolds and their application to shape space. SIAM J. Optim. 22(2), 596–627 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rozložník, M., Tůma, M., Smoktunowicz, A., Kopal, J.: Numerical stability of orthogonalization methods with a non-standard inner product. BIT Numer. Math. 52(4), 1035–1058 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sato, H.: A Dai–Yuan-type Riemannian conjugate gradient method with the weak Wolfe conditions. Comput. Optim. Appl. 64(1), 101–118 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sato, H., Iwai, T.: A Riemannian optimization approach to the matrix singular value decomposition. SIAM J. Optim. 23(1), 188–212 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sato, H., Sato, K.: Riemannian optimal system identification algorithm for linear MIMO systems. IEEE Control Syst. Lett. 1(2), 376–381 (2017)

    Article  Google Scholar 

  19. Yger, F., Berar, M., Gasso, G., Rakotomamonjy, A.: Adaptive canonical correlation analysis based on matrix manifolds. In: Proceedings of the 29th International Conference on Machine Learning, pp. 299–306 (2012)

  20. Yger, F., Berar, M., Gasso, G., Rakotomamonjy, A.: Oblique principal subspace tracking on manifold. In: Proceedings of the 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2429–2432. IEEE (2012)

Download references

Acknowledgements

The authors would like to thank the editor and the reviewer for their careful reading and constructive comments, especially on Theorem 3.2. The authors would also like to thank Dr. Akira Imakura (University of Tsukuba) and Dr. Yusaku Yamamoto (The University of Electro-Communications) for their helpful advice. This study was supported in part by Grant Numbers JP16K17647 and JP18K18064 from the Grants-in-Aid for Scientific Research Program (KAKENHI) of the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Sato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, H., Aihara, K. Cholesky QR-based retraction on the generalized Stiefel manifold. Comput Optim Appl 72, 293–308 (2019). https://doi.org/10.1007/s10589-018-0046-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-018-0046-7

Keywords

Mathematics Subject Classification

Navigation