Skip to main content
Log in

SDP reformulation for robust optimization problems based on nonconvex QP duality

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In a real situation, optimization problems often involve uncertain parameters. Robust optimization is one of distribution-free methodologies based on worst-case analyses for handling such problems. In this paper, we first focus on a special class of uncertain linear programs (LPs). Applying the duality theory for nonconvex quadratic programs (QPs), we reformulate the robust counterpart as a semidefinite program (SDP) and show the equivalence property under mild assumptions. We also apply the same technique to the uncertain second-order cone programs (SOCPs) with “single” (not side-wise) ellipsoidal uncertainty. Then we derive similar results on the reformulation and the equivalence property. In the numerical experiments, we solve some test problems to demonstrate the efficiency of our reformulation approach. Especially, we compare our approach with another recent method based on Hildebrand’s Lorentz positivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Notice that the single ellipsoidal uncertainty is considered for each SOC constraint. Therefore, if the SOCP has K SOC constraints, then the whole uncertainty set consists of K independent ellipsoids. (See Sect. 4.)

  2. Typically, Ω is ℝn, \(\mathbb {R}^{n}_{+}\), or a polyhedral set characterized by a finite number of linear equalities and inequalities.

  3. In general, set Z can depends on the true value of Player 2’s strategy. For more details, see [23].

  4. The robust Nash equilibrium coincides with the well-known Nash equilibrium when Y={y}, Z={z}, D A ={A} and D B ={B}.

  5. By the constraints of SDP (3.16), \(P^{i}_{0}(x^{*}) - \alpha_{i}^{*} P^{i}_{1} - \beta_{i}^{*} P^{i}_{2} \succeq0\) always holds at the optimum \((x^{*}, \alpha^{*}, \beta^{*}, \lambda_{0}^{*})\).

  6. If m i =1 for some i, then the constraint can be rewritten as two linear inequalities \(-(\hat{c}^{i})^{\top}x + \hat{d}^{i} \le\hat{A}^{i}x + \hat{b}^{i} \le(\hat{c}^{i})^{\top}x + \hat{d}^{i}\). So existing frameworks can be applied. (See Ben-Tal and Nemirovski [9].)

  7. The problem where \((\hat{A}, \hat{b}, \hat{c}, \hat{d})\) is replaced by (A 0,b 0,c 0,d 0) is called a nominal problem.

  8. Note that, if a nominal problem has an optimal solution, then the objective function value of problem (5.1) is bounded below. (The feasible region of problem (5.1) becomes smaller as κ increases.)

  9. Actually, we did not apply the Hildebrand-based approach to instances satisfying condition (4.13), since the RC optimality of our approach is theoretically guaranteed for such problem instances.

References

  1. Adida, E., Perakis, G.: A robust optimization approach to dynamic pricing and inventory control with no backorders. Math. Program. 107, 97–129 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aghassi, M., Bertsimas, D.: Robust game theory. Math. Program. 107, 231–273 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Program. 95, 3–51 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beck, A., Eldar, Y.C.: Strong duality in nonconvex quadratic optimization with two quadratic constraints. SIAM J. Optim. 17, 844–860 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton University Press, Princeton (2009)

    MATH  Google Scholar 

  6. Ben-Tal, A., Margalit, T., Nemirovski, A.: Robust modeling of multi-stage portfolio problems. In: Frenk, H., Roos, K., Terlaky, T., Zhang, S. (eds.) High Performance Optimization, pp. 303–328. Kluwer, Dordrecht (2000)

    Chapter  Google Scholar 

  7. Ben-Tal, A., Nemirovski, A.: Stable truss topology design via semidefinite programming. SIAM J. Optim. 7, 991–1016 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Math. Oper. Res. 23, 769–805 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ben-Tal, A., Nemirovski, A.: Robust solutions of uncertain linear programs. Oper. Res. Lett. 25, 1–13 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization. Society for Industrial & Applied Mathematics, Philadelphia (2001)

    MATH  Google Scholar 

  11. Ben-Tal, A., Nemirovski, A.: Extending scope of robust optimization: comprehensive robust counterparts of uncertain problems. Math. Program. 107, 63–89 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ben-Tal, A., Nemirovski, A.: Selected topics in robust convex optimization. Math. Program. 112, 125–158 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ben-Tal, A., Nemirovski, A., Roos, C.: Robust solutions of uncertain quadratic and conic-quadratic problems. SIAM J. Optim. 13, 535–560 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bertsekas, D.P.: Convex Analysis and Optimization. Athena Scientific, Belmont (2003)

    MATH  Google Scholar 

  15. Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52, 35–53 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bertsimas, D., Thiele, A.: Robust optimization approach to inventory theory. Oper. Res. 54, 150–168 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Boni, O., Ben-Tal, A., Nemirovski, A.: Robust solutions to conic quadratic problems and their applications. Optim. Eng. 9, 1–8 (2008)

    Article  MathSciNet  Google Scholar 

  18. El Ghaoui, L., Lebret, H.: Robust solutions to least-squares problem with uncertain data. SIAM J. Matrix Anal. Appl. 18, 1035–1064 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. El Ghaoui, L., Oks, M., Oustry, F.: Worst-case Value-at-Risk and robust portfolio optimization: a conic programming approach. Oper. Res. 51, 543–556 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. El Ghaoui, L., Oustry, F., Lebret, H.: Robust solutions to uncertain semidefinite programs. SIAM J. Optim. 9, 33–52 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Goldfarb, D., Iyengar, G.: Robust portfolio selection problems. Math. Oper. Res. 28, 1–37 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Harville, D.A.: Matrix Algebra from a Statistician’s Perspective. Springer, New York (2007)

    Google Scholar 

  23. Hayashi, S., Yamashita, N., Fukushima, M.: Robust Nash equilibria and second-order cone complementarity problems. J. Nonlinear Convex Anal. 6, 283–296 (2005)

    MathSciNet  MATH  Google Scholar 

  24. Hildebrand, R.: An LMI description for the cone of Lorentz-positive maps. Linear Multilinear Algebra 55, 551–573 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hildebrand, R.: An LMI description for the cone of Lorentz-positive maps II. Linear Multilinear Algebra 59, 719–731 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Huang, D.S., Fabozzi, F.J., Fukushima, M.: Robust portfolio selection with uncertain exit time using worst-case VaR strategy. Oper. Res. Lett. 35, 627–635 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Huang, D.S., Zhu, S.S., Fabozzi, F.J., Fukushima, M.: Portfolio selection with uncertain exit time: a robust CVaR approach. J. Econ. Dyn. Control 32, 594–623 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming. Linear Algebra Appl. 284, 193–228 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. López, M., Still, G.: Semi-infinite programming. Eur. J. Oper. Res. 180, 491–518 (2007)

    Article  MATH  Google Scholar 

  30. Nishimura, R., Hayashi, S., Fukushima, M.: Robust Nash equilibria in N-person noncooperative games: uniqueness and reformulation. Pac. J. Optim. 5, 237–259 (2009)

    MathSciNet  MATH  Google Scholar 

  31. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  32. Tütüncü, R.H., Toh, K.C., Todd, M.J.: Solving semidefinite-quadratic-linear programs using SDPT3. Math. Program. 95, 189–217 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38, 49–95 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhong, P., Fukushima, M.: Second-order cone programming formulations for robust multiclass classification. Neural Comput. 19, 258–282 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhu, S.S., Fukushima, M.: Worst-case conditional Value-at-Risk with application to robust portfolio management. Oper. Res. 57, 1155–1168 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zymler, S., Rustem, B., Kuhn, D.: Robust portfolio optimization with derivative insurance guarantees. Eur. J. Oper. Res. 210, 410–424 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunsuke Hayashi.

Additional information

This research was supported in part by Grant-in-Aid for Young Scientists (B) and Scientific Research (C) from Japan Society for the Promotion of Science.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishimura, R., Hayashi, S. & Fukushima, M. SDP reformulation for robust optimization problems based on nonconvex QP duality. Comput Optim Appl 55, 21–47 (2013). https://doi.org/10.1007/s10589-012-9520-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-012-9520-9

Keywords

Navigation