Skip to main content
Log in

Service selection mechanisms in the Internet of Things (IoT): a systematic and comprehensive study

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Internet of Things (IoT) describes embedded devices (things) with Internet-based connectivity, enabling them to receive and send data through the communication network. In addition, it provides infrastructure to let things have interacted with each other and people. This advantage of the IoT can increase reliability, sustainability, and efficiency by enhanced information access fashion. This technology can be used in various fields, such as environmental monitoring, home, and building automation and smart networks. Furthermore, the main aim of Service-Oriented Architecture (SOA) is to select the best services among a pool of services. These services can be selected statically or dynamically regarding the service functionalities and performance limitations. Since the performance of complex services is very important in many distributed domains. This study aims to systematically review the service selection mechanisms in the IoT. The service selection mechanisms are classified into centralized, decentralized, and hybrid classes. Also, the detailed evaluation of these techniques brings a good suggestion for further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. ADF is the abbreviation of Adjusted cosine, Data smoothing and Fusion of similarity.

  2. UDDI (Universal Description, Discovery, and Integration) works as a mediator between the requester and the provider.

References

  1. Ghanbari, Z., Navimipour, N.J., Hosseinzadeh, M., Darwesh, A.: Resource allocation mechanisms and approaches on the Internet of Things. Clust. Comput. 22, 1–30 (2019)

    Google Scholar 

  2. Hajiheidari, S., Wakil, K., Badri, M., Navimipour, N.J.: Intrusion detection systems in the Internet of things: a comprehensive investigation. Comput. Netw. 160, 165–191 (2019)

    Google Scholar 

  3. Trappey, A.J.C., Trappey, C.V., Govindarajan, U.H., Chuang, A.C., Sun, J.J.: A review of essential standards and patent landscapes for the Internet of Things: a key enabler for Industry 40. Adv. Eng. Inform. 33, 208–229 (2017)

    Google Scholar 

  4. Ray, P.P.: A survey on Internet of Things architectures. J. King Saud Univ Comput. Inform. Sci. 30(3), 291–319 (2018)

    Google Scholar 

  5. Wang, M., Zhong, R.Y., Dai, Q., Huang, G.Q.: A MPN-based scheduling model for IoT-enabled hybrid flow shop manufacturing. Adv. Eng. Inform. 30(4), 728–736 (2016)

    Google Scholar 

  6. Tan, L., Wang, N.: Future internet: the internet of things. In: Proceedings of the 2010 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), vol. 5, pp. V5-376–V5-380, IEEE (2010)

  7. Motamedi, A., Soltani, M.M., Setayeshgar, S., Hammad, A.: Extending IFC to incorporate information of RFID tags attached to building elements. Adv. Eng. Inform. 30(1), 39–53 (2016)

    Google Scholar 

  8. Bao, F., Chen, I.-R.: Dynamic trust management for internet of things applications. In: Proceedings of the 2012 International Workshop on Self-Aware Internet of Things, pp. 1–6, ACM (2012)

  9. Bandyopadhyay, D., Sen, J.: Internet of things: applications and challenges in technology and standardization. Wirel. Pers. Commun. 58(1), 49–69 (2011)

    Google Scholar 

  10. Miorandi, D., Sicari, S., De Pellegrini, F., Chlamtac, I.: Internet of things: vision, applications and research challenges. Ad Hoc Netw. 10(7), 1497–1516 (2012)

    Google Scholar 

  11. Khan, R., Khan, S.U., Zaheer, R., Khan, S.: Future internet: the Internet of Things architecture, possible applications and key challenges. In: Proceedings of the 2012 10th International Conference on Frontiers of Information Technology (FIT), pp. 257–260, IEEE (2012)

  12. Borgia, E.: The Internet of Things vision: key features, applications and open issues. Comput. Commun. 54, 1–31 (2014)

    Google Scholar 

  13. Coetzee, L., Eksteen, J.: The Internet of Things-promise for the future? An introduction. In: Proceedings of the IST-Africa Conference 2011, pp. 1–9, IEEE (2011)

  14. Pourghebleh, B., Navimipour, N.J.: Data aggregation mechanisms in the Internet of Things: a systematic review of the literature and recommendations for future research. J. Netw. Comput. Appl. 97, 3423–3434 (2017)

    Google Scholar 

  15. Zheng, P., Chen, C.-H., Shang, S.: Towards an automatic engineering change management in smart product-service systems–A DSM-based learning approach. Adv. Eng. Inform. 39, 203–213 (2019)

    Google Scholar 

  16. Mejri, M., Azzouna, N.B.: Scalable and self-adaptive service selection method for the Internet of Things. Int. J. Comput. Appl. 167(10), 43–49 (2017)

    Google Scholar 

  17. Conti, M., Dehghantanha, A., Franke, K., Watson, S.: Internet of Things Security and Forensics: Challenges and Opportunities. Elsevier, Amsterdam (2018)

    Google Scholar 

  18. Kanagaraju, P., Nallusamy, R.: Registry service selection based secured Internet of Things with imperative control for industrial applications. Clust. Comput. (2018). https://doi.org/10.1007/s10586-017-1678-6

    Article  Google Scholar 

  19. Singla, C., Mahajan, N., Kaushal, S., Verma, A., Sangaiah, A.K.: Modelling and analysis of multi-objective service selection scheme in IoT-cloud environment. In: Sangaiah, A.K. (ed.) Cognitive Computing for Big Data Systems Over IoT, pp. 63–77. Springer, New York (2018)

    Google Scholar 

  20. Ghadimi, N., Akbarimajd, A., Shayeghi, H., Abedinia, O.: Application of a new hybrid forecast engine with feature selection algorithm in a power system. Int. J. Ambient Energy 40(5), 494–503 (2017)

    Google Scholar 

  21. Ghadimi, N., Akbarimajd, A., Shayeghi, H., Abedinia, O.: Two stage forecast engine with feature selection technique and improved meta-heuristic algorithm for electricity load forecasting. Energy 161, 130–142 (2018)

    Google Scholar 

  22. Manqele, L., Dlodlo, M., Coetzee, L., Williams, Q., Sibiya, G.: Preference-based Internet of Things dynamic service selection for smart campus. In: Proceedings of the AFRICON, 2015, pp. 1–5, IEEE (2015)

  23. Hwang, S.-Y., Lim, E.-P., Lee, C.-H., Chen, C.-H.: Dynamic web service selection for reliable web service composition. IEEE Trans. Serv. Comput. 1(2), 104–116 (2008)

    Google Scholar 

  24. Gollou, A.R., Ghadimi, N.: A new feature selection and hybrid forecast engine for day-ahead price forecasting of electricity markets. J. Intell. Fuzzy Syst. 32(6), 4031–4045 (2017)

    Google Scholar 

  25. Kumar, A.D.V., Arockiam, L.: TOPQoS: TENSOR based optimum path selection in Internet of Things to enhance quality of service (2017)

  26. Leng, H., Li, X., Zhu, J., Tang, H., Zhang, Z., Ghadimi, N.: A new wind power prediction method based on ridgelet transforms, hybrid feature selection and closed-loop forecasting. Adv. Eng. Inform. 36, 20–30 (2018)

    Google Scholar 

  27. Naseri, A., Navimipour, N.J.: A new agent-based method for QoS-aware cloud service composition using particle swarm optimization algorithm. J. Ambient Intell. Humaniz. Comput. 10(5), 1851–1864 (2018)

    Google Scholar 

  28. Aznoli, F., Navimipour, N.J.: Deployment strategies in the wireless sensor networks: systematic literature review, classification, and current trends. Wirel. Pers. Commun. 95(2), 819–846 (2017)

    Google Scholar 

  29. Asghari, S., Navimipour, N.J.: Nature inspired meta-heuristic algorithms for solving the service composition problem in the cloud environments. Concurr. Comput. 31(12), e3708 (2018)

    Google Scholar 

  30. Bouzary, H., Chen, F.F.: Service optimal selection and composition in cloud manufacturing: a comprehensive survey. Int. J. Adv. Manuf. Technol. 97(1–4), 795–808 (2018)

    Google Scholar 

  31. Yang, L., Liu, L., Fan, Q.: A survey of user preferences oriented service selection and deployment in multi-cloud environment. In: Proceedings of the 2017 18th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT), pp. 354–359, IEEE (2017)

  32. Sobhika, R.: An optimal cloud service selection based on the QoS values: a survey. (2015)

  33. Khédiri, N., Zaghdoud, M.: Survey of uncertainty handling in cloud service discovery and composition. http://arxiv.org/abs/1501.01537 (2015)

  34. Guerfel, R., Sbai, Z., Ayed, R.B.: On service composition in cloud computing: a survey and an ongoing architecture. In: Proceedings of the 2014 IEEE 6th International Conference on Cloud Computing Technology and Science (CloudCom), pp. 875–880, IEEE (2014)

  35. Asghari, P., Rahmani, A.M., Javadi, H.H.S.: Service composition approaches in IoT: a systematic review. J. Netw. Comput. Appl. 120, 61–77 (2018)

    Google Scholar 

  36. Asghari, S., Navimipour, N.J.: Service composition mechanisms in the multi-cloud environments: a survey. Int. J. New Comput. Archit. Appl. (IJNCAA) 6, 40–48 (2016)

    Google Scholar 

  37. Hamzei, M., Navimipour, N.J.: Toward efficient service composition techniques in the Internet of Things. IEEE Internet Things J. 5(5), 3774–3787 (2018)

    Google Scholar 

  38. Wu, M., Lu, T.-J., Ling, F.-Y., Sun, J., Du, H.-Y.: Research on the architecture of Internet of Things. In: Proceedings of the 2010 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), vol. 5, pp. V5-484–V5-487, IEEE (2010)

  39. Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., Zhao, W.: A survey on Internet of Things: architecture, enabling technologies, security and privacy, and applications. IEEE Internet Things J. 4(5), 1125–1142 (2017)

    Google Scholar 

  40. Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M.: Internet of Things for smart cities. IEEE Internet Things J. 1(1), 22–32 (2014)

    Google Scholar 

  41. Lee, I., Lee, K.: The Internet of Things (IoT): applications, investments, and challenges for enterprises. Bus. Horiz. 58(4), 431–440 (2015)

    Google Scholar 

  42. Sun, Q.-B., Liu, J., Li, S., Fan, C.-X., Sun, J.-J.: Internet of Things: summarize on concepts, architecture and key technology problem. J. Beijing Univ. Posts Telecommun. 3(3), 1–9 (2010)

    Google Scholar 

  43. Wang, Q., Lee, B., Murray, N., Qiao, Y.: CS-Man: computation service management for IoT in-network processing. In: Proceedings of the 2016 27th Irish Signals and Systems Conference (ISSC), pp. 1–6, IEEE (2016)

  44. ur Rehman, Z., Hussain, F.K., Hussain, O.K.: Towards multi-criteria cloud service selection. In: Proceedings of the 2011 Fifth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), pp. 44–48, IEEE (2011)

  45. Qu, L., Wang, Y., Orgun, M.A.: Cloud service selection based on the aggregation of user feedback and quantitative performance assessment. In: Proceedings of the 2013 IEEE International Conference on Services computing (SCC), pp. 152–159, IEEE (2013)

  46. Wang, S., Zheng, Z., Sun, Q., Zou, H., Yang, F.: Cloud model for service selection. In: Proceedings of the 2011 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 666–671, IEEE (2011)

  47. Garg, S.K., Versteeg, S., Buyya, R.: A framework for ranking of cloud computing services. Future Gener. Comput. Syst. 29(4), 1012–1023 (2013)

    Google Scholar 

  48. Paolucci, M., Sycara, K.P., Kawamura, T.: Delivering semantic web services. WWW (Alternate Paper Tracks), vol. 192 (2003)

  49. Yu, T., Lin, K.-J.: Service selection algorithms for Web services with end-to-end QoS constraints. IseB 3(2), 103–126 (2005)

    Google Scholar 

  50. Ahadi, A., Ghadimi, N., Mirabbasi, D.: Reliability assessment for components of large scale photovoltaic systems. J. Power Sour. 264, 211–219 (2014)

    Google Scholar 

  51. Jin, X., Chun, S., Jung, J., Lee, K.-H.: IoT service selection based on physical service model and absolute dominance relationship. In: Proceedings of the 2014 IEEE 7th International Conference on Service-Oriented Computing and Applications (SOCA), pp. 65–72, IEEE (2014)

  52. Akbary, P., Ghiasi, M., Pourkheranjani, M.R.R., Alipour, H., Ghadimi, N.: Extracting appropriate nodal marginal prices for all types of committed reserve. Comput. Econ. 53(1), 1–26 (2017)

    Google Scholar 

  53. Jin, X., Chun, S., Jung, J., Lee, K.-H.: A fast and scalable approach for IoT service selection based on a physical service model. Inf. Syst. Front. 19(6), 1357–1372 (2017)

    Google Scholar 

  54. Zhao, L., Ren, Y., Li, M., Sakurai, K.: Flexible service selection with user-specific QoS support in service-oriented architecture. J. Netw. Comput. Appl. 35(3), 962–973 (2012)

    Google Scholar 

  55. Zeng, W., Zhao, Y., Zeng, J.: Cloud service and service selection algorithm research. In: Proceedings of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation, pp. 1045–1048, ACM (2009)

  56. Yin, X., Yang, J.: Shortest paths based web service selection in internet of things. J. Sens. 2014, 10 (2014)

    Google Scholar 

  57. Adda, M., Saad, R.: A data sharing strategy and a DSL for service discovery, selection and consumption for the IoT. Proc. Comput. Sci. 37, 92–100 (2014)

    Google Scholar 

  58. Nwe, N.H.W., Bao, J.-M., Gang, C.: Flexible user-centric service selection algorithm for internet of things services. J. China Univ. Posts Telecommun. 21, 64–70 (2014)

    Google Scholar 

  59. Qi, L., Dai, P., Yu, J., Zhou, Z., Xu, Y.: “Time–Location–Frequency”–aware Internet of Things service selection based on historical records. Int. J. Distrib. Sens. Netw. 13(1), 1550147716688696 (2017)

    Google Scholar 

  60. Rapti, E., Karageorgos, A., Gerogiannis, V.C.: Decentralised service composition using potential fields in Internet of Things applications. Proc. Comput. Sci. 52, 700–706 (2015)

    Google Scholar 

  61. Dideban, M., Ghadimi, N., Ahmadi, M.B., Karimi, M.: Optimal location and sizing of shunt capacitors in distribution systems by considering different load scenarios. J. Electr. Eng. Technol. 8(5), 1012–1020 (2013)

    Google Scholar 

  62. Ghadimi, N.: MDE with considered different load scenarios for solving optimal location and sizing of shunt capacitors. Natl. Acad. Sci. Lett. 37(5), 447–450 (2014)

    MathSciNet  Google Scholar 

  63. Maleksaeedi, I., Khiav, B.E., Germi, M.B., Ghadimi, N.: A new two-stage algorithm for solving power flow tracing. Complexity 21(1), 187–194 (2015)

    Google Scholar 

  64. Saeedi, M., Moradi, M., Hosseini, M., Emamifar, A., Ghadimi, N.: Robust optimization based optimal chiller loading under cooling demand uncertainty. Appl. Therm. Eng. 148, 1081–1091 (2019)

    Google Scholar 

  65. Alyari, F., Navimipour, N.J.: Recommender systems: a systematic review of the state of the art literature and suggestions for future research. Kybernetes 47(5), 985–1017 (2018)

    Google Scholar 

  66. Souri, A., Rahmani, A.M., Navimipour, N.J.: Formal verification approaches in the web service composition: a comprehensive analysis of the current challenges for future research. Int. J. Commun. Syst. 31(17), e3808 (2018)

    Google Scholar 

  67. Asghari, S., Navimipour, N.J.: Nature inspired meta-heuristic algorithms for solving the service composition problem in the cloud environments. Int. J. Commun. Syst. 31(12), e3708 (2018)

    Google Scholar 

  68. Neghabi, A.A., Navimipour, N.J., Hosseinzadeh, M., Rezaee, A.: Nature-inspired meta-heuristic algorithms for solving the load balancing problem in the software-defined network. Int. J. Commun. Syst. 32(4), e3875 (2019)

    Google Scholar 

  69. Saberi, M.K.: Open access journals with a view of journals covered in ISI. Inf. Sci. Technol. 24(2), 105–122 (2009)

    Google Scholar 

  70. Saberi, M.K.: Intrapreneurship in public libraries: an exploratory and confirmatory factor analysis. Libr. Philos. Pract. 17, 1–15 (2018)

    Google Scholar 

  71. Saberi, M.K., Ekhtiyari, F.: Usage, captures, mentions, social media and citations of LIS highly cited papers: an altmetrics study. Perform. Meas. Metr. 20(1), 1–15 (2019)

    Google Scholar 

  72. Saberi, M.K., Isfandyari-Moghaddam, A., Mohamadesmaeil, S.: Web citations analysis of the JASSS: the first ten years. J. Artif. Soc. Soc. Simul. 14(4), 22 (2011)

    Google Scholar 

  73. Charband, Y., Navimipour, N.J.: Knowledge sharing mechanisms in the education: a systematic review of the state of the art literature and recommendations for future research. Kybernetes 47(7), 1456–1490 (2018)

    Google Scholar 

  74. Sheikholeslami, F., Navimipour, N.J.: Auction-based resource allocation mechanisms in the cloud environments: a review of the literature and reflection on future challenges. Concurr. Comput. 30(16), e4456 (2018)

    Google Scholar 

  75. Milan, S.T., Rajabion, L., Ranjbar, H., Navimipour, N.J.: Nature inspired meta-heuristic algorithms for solving the load-balancing problem in cloud environments. Comput. Oper. Res. 110, 159–187 (2019)

    MathSciNet  MATH  Google Scholar 

  76. Na, J., Lin, K.-J., Huang, Z., Zhou, S.: An evolutionary game approach on IoT service selection for balancing device energy consumption. In: Proceedings of the 2015 IEEE 12th International Conference on e-Business Engineering (ICEBE), pp. 331–338, IEEE (2015)

  77. Baek, K., Ko, I.-Y.: Spatio-cohesive service selection using machine learning in dynamic IoT environments. In: Proceedings of the International Conference on Web Engineering, pp. 366–374, Springer (2018)

  78. Xiang, C., Yang, P., Wu, X., He, H., Xiao, S.: QoS-based service selection with lightweight description for large-scale service-oriented Internet of Things. Tsinghua Sci. Technol. 20(4), 336–347 (2015)

    Google Scholar 

  79. Rapti, E., Houstis, C., Houstis, E., Karageorgos, A.: A bio-inspired service discovery and selection approach for IoT applications. In: Proceedings of the 2016 IEEE International Conference on Services Computing (SCC), pp. 868–871, IEEE (2016)

  80. Rapti, E., Karageorgos, A., Houstis, C., Houstis, E.: Decentralized service discovery and selection in Internet of Things applications based on artificial potential fields. SOCA 11(1), 75–86 (2017)

    Google Scholar 

  81. Nizamkari, N.S.: A graph-based trust-enhanced recommender system for service selection in IOT. In: Proceedings of the 2017 International Conference on Inventive Systems and Control (ICISC), pp. 1–5, IEEE (2017)

  82. Li, H., He, T.: Selecting key feature sequence of resource services in industrial Internet of Things. IEEE Access 6, 72152–72162 (2018)

    Google Scholar 

  83. Duan, L., Da Xu, L.: Business intelligence for enterprise systems: a survey. IEEE Trans. Ind. Inform. 8(3), 679–687 (2012)

    Google Scholar 

  84. Menascé, D.A., Casalicchio, E., Dubey, V.: On optimal service selection in service oriented architectures. Perform. Eval. 67(8), 659–675 (2010)

    Google Scholar 

  85. Haresh, M., Kalady, S., Govindan, V.: Agent based dynamic resource allocation on federated clouds. In: Proceedings of the Recent Advances in Intelligent Computational Systems (RAICS), 2011, pp. 111–114, IEEE (2011)

  86. Selvi, S.T., Valliyammai, C., Dhatchayani, V.N.: Resource allocation issues and challenges in cloud computing. In: Proceedings of the 2014 International Conference on Recent Trends in Information Technology (ICRTIT), pp. 1–6, IEEE (2014)

  87. Wang, Y., Vassileva, J.: A review on trust and reputation for web service selection. In: Proceedings of the 27th International Conference on Distributed computing systems workshops, 2007 (ICDCSW’07), pp. 25–25, IEEE (2007)

  88. Wendell, P., Jiang, J.W., Freedman, M.J., Rexford, J.: Donar: decentralized server selection for cloud services. ACM SIGCOMM Comput. Commun. Rev. 41(4), 231–242 (2011)

    Google Scholar 

  89. Alhamad, M., Dillon, T., Chang, E.: Sla-based trust model for cloud computing. In: Proceedings of the 2010 13th International Conference on Network-Based Information Systems (NBiS), pp. 321–324, IEEE (2010)

  90. Nallur, V., Bahsoon, R.: A decentralized self-adaptation mechanism for service-based applications in the cloud. IEEE Trans. Softw. Eng. 39(5), 591–612 (2013)

    Google Scholar 

  91. Tang, M., Ai, L.: A hybrid genetic algorithm for the optimal constrained web service selection problem in web service composition. In: Proceedings of the 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8, IEEE (2010)

  92. Chen, X., Liu, X., Huang, Z., Sun, H.: Regionknn: A scalable hybrid collaborative filtering algorithm for personalized web service recommendation. In: Proceedings of the 2010 IEEE International Conference on Web Services (ICWS), pp. 9–16, IEEE (2010)

  93. Evans, D.: The internet of things: how the next evolution of the internet is changing everything. CISCO White Pap. 1(2011), 1–11 (2011)

    Google Scholar 

  94. Liu, Y., Wang, W., Ghadimi, N.: Electricity load forecasting by an improved forecast engine for building level consumers. Energy 139, 18–30 (2017)

    Google Scholar 

  95. Mirzapour, F., Lakzaei, M., Varamini, G., Teimourian, M., Ghadimi, N.: A new prediction model of battery and wind-solar output in hybrid power system. J. Ambient Intell. Humaniz. Comput. 10(1), 77–87 (2017)

    Google Scholar 

  96. Abedinia, O., Bekravi, M., Ghadimi, N.: Intelligent controller based wide-area control in power system. Int. J. Uncertain. 25(01), 1–30 (2017)

    Google Scholar 

  97. Aghajani, G., Ghadimi, N.: Multi-objective energy management in a micro-grid. Energy Rep. 4, 218–225 (2018)

    Google Scholar 

  98. Darvishan, A., Mollashahi, H., Ghaffari, V., Lariche, M.J.: Unit commitment-based load uncertainties based on improved particle swarm optimisation. Int. J. Ambient Energy 40(6), 594–599 (2018)

    Google Scholar 

  99. Ghadimi, N., Afkousi-Paqaleh, A., Emamhosseini, A.: A PSO-based fuzzy long-term multi-objective optimization approach for placement and parameter setting of UPFC. Arab. J. Sci. Eng. 39(4), 2953–2963 (2014)

    MATH  Google Scholar 

  100. Aghazadeh, H., Germi, M.B., Khiav, B.E., Ghadimi, N.: Robust placement and tuning of UPFC via a new multiobjective scheme-based fuzzy theory. Complexity 21(1), 126–137 (2015)

    MathSciNet  Google Scholar 

  101. Ghadimi, N.: A new hybrid algorithm based on optimal fuzzy controller in multimachine power system. Complexity 21(1), 78–93 (2015)

    MathSciNet  Google Scholar 

  102. Firouz, M.H., Ghadimi, N.: Concordant controllers based on FACTS and FPSS for solving wide-area in multi-machine power system. J. Intell. Fuzzy Syst. 30(2), 845–859 (2016)

    Google Scholar 

  103. Jalili, A., Ghadimi, N.: Hybrid harmony search algorithm and fuzzy mechanism for solving congestion management problem in an electricity market. Complexity 21(S1), 90–98 (2016)

    MathSciNet  Google Scholar 

  104. Mohammadi, M., Talebpour, F., Safaee, E., Ghadimi, N., Abedinia, O.: Small-scale building load forecast based on hybrid forecast engine. Neural Process. Lett. 48(1), 329–351 (2018)

    Google Scholar 

  105. Razmjooy, N., Sheykhahmad, F.R., Ghadimi, N.: A hybrid neural network–world cup optimization algorithm for melanoma detection. Open Med. 13(1), 9–16 (2018)

    Google Scholar 

  106. Baghban, A., Hekmati, R., Hajiali, M., Lariche, M.J., Kamyab, M.: Application of MLP-ANN as novel tool for estimation of effect of inhibitors on asphaltene precipitation reduction. Pet. Sci. Technol. 36(16), 1272–1277 (2018)

    Google Scholar 

  107. Tashayo, B., Zarei, F., Zarrabi, H., Lariche, M.J., Baghban, A.: Utilization of RBF-ANN as a novel approach for estimation of asphaltene inhibition efficiency. Pet. Sci. Technol. 36(16), 1216–1221 (2018)

    Google Scholar 

  108. Abedinia, O., Amjady, N., Ghadimi, N.: Solar energy forecasting based on hybrid neural network and improved metaheuristic algorithm. Comput. Intell. 34(1), 241–260 (2018)

    MathSciNet  Google Scholar 

  109. Ebadi, Y., Navimipour, N.J.: An energy-aware method for data replication in the cloud environments using a Tabu search and particle swarm optimization algorithm. Concurr. Comput. 31(1), e4757 (2019)

    Google Scholar 

  110. Bagal, H.A., Soltanabad, Y.N., Dadjuo, M., Wakil, K., Ghadimi, N.: Risk-assessment of photovoltaic-wind-battery-grid based large industrial consumer using information gap decision theory. Sol. Energy 169, 343–352 (2018)

    Google Scholar 

  111. Khodaei, H., Hajiali, M., Darvishan, A., Sepehr, M., Ghadimi, N.: Fuzzy-based heat and power hub models for cost-emission operation of an industrial consumer using compromise programming. Appl. Therm. Eng. 137, 395–405 (2018)

    Google Scholar 

  112. Firouz, M.H., Ghadimi, N.: Optimal preventive maintenance policy for electric power distribution systems based on the fuzzy AHP methods. Complexity 21(6), 70–88 (2016)

    MathSciNet  Google Scholar 

  113. Ebrahimian, H., Barmayoon, S., Mohammadi, M., Ghadimi, N.: The price prediction for the energy market based on a new method. Econ. Res. 31(1), 313–337 (2018)

    Google Scholar 

  114. Ghadimi, N., Afkousi-Paqaleh, M., Nouri, A.: PSO based fuzzy stochastic long-term model for deployment of distributed energy resources in distribution systems with several objectives. IEEE Syst. J. 7(4), 786–796 (2013)

    Google Scholar 

  115. Ahmadian, I., Abedinia, O., Ghadimi, N.: Fuzzy stochastic long-term model with consideration of uncertainties for deployment of distributed energy resources using interactive honey bee mating optimization. Front. Energy 8(4), 412–425 (2014)

    Google Scholar 

  116. Hamian, M., Darvishan, A., Hosseinzadeh, M., Lariche, M.J., Ghadimi, N., Nouri, A.: A framework to expedite joint energy-reserve payment cost minimization using a custom-designed method based on Mixed Integer Genetic Algorithm. Eng. Appl. Artif. Intell. 72, 203–212 (2018)

    Google Scholar 

  117. Hajiali, M., Amirmazlaghani, M., Kordestani, H.: Preventing phishing attacks using text and image watermarking. Concurr. Comput. 31(13), e5083 (2019)

    Google Scholar 

  118. Alamir, P., Navimipour, N.J.: Trust evaluation between users of social networks using the quality of service requirements and call log histories. Kybernetes 45(10), 1505–1523 (2016)

    Google Scholar 

  119. Chiregi, M., Navimipour, N.J.: A new method for trust and reputation evaluation in the cloud environments using the recommendations of opinion leaders’ entities and removing the effect of troll entities. Comput. Hum. Behav. 60, 280–292 (2016)

    Google Scholar 

  120. Chiregi, M., Navimipour, N.J.: A comprehensive study of the trust evaluation mechanisms in the cloud computing. J. Serv. Sci. Res. 9(1), 1–30 (2017)

    Google Scholar 

  121. Hajizadeh, R., Navimipour, N.J.: A method for trust evaluation in the cloud environments using a behavior graph and services grouping. Kybernetes 46(7), 1245–1261 (2017)

    Google Scholar 

Download references

Acknowledgements

This research is supported by the Fundamental Research Funds for the Central Universities (No. 2018MS146).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunyan Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Huang, Y., Zhang, M. et al. Service selection mechanisms in the Internet of Things (IoT): a systematic and comprehensive study. Cluster Comput 23, 1163–1183 (2020). https://doi.org/10.1007/s10586-019-02984-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-019-02984-4

Keywords

Navigation