Skip to main content

Advertisement

Log in

Analysis of radiation therapy in a model of triple-negative breast cancer brain metastasis

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Most cancer patients with brain metastases are treated with radiation therapy, yet this modality has not yet been meaningfully incorporated into preclinical experimental brain metastasis models. We applied two forms of whole brain radiation therapy (WBRT) to the brain-tropic 231-BR experimental brain metastasis model of triple-negative breast cancer. When compared to sham controls, WBRT as 3 Gy × 10 fractions (3 × 10) reduced the number of micrometastases and large metastases by 87.7 and 54.5 %, respectively (both p < 0.01); whereas a single radiation dose of 15 Gy × 1 (15 × 1) was less effective, reducing metastases by 58.4 % (p < 0.01) and 47.1 % (p = 0.41), respectively. Neuroinflammation in the adjacent brain parenchyma was due solely to a reaction from metastases, and not radiotherapy, while adult neurogenesis in brains was adversely affected following both radiation regimens. The nature of radiation resistance was investigated by ex vivo culture of tumor cells that survived initial WBRT (“Surviving” cultures). The Surviving cultures surprisingly demonstrated increased radiosensitivity ex vivo. In contrast, re-injection of Surviving cultures and re-treatment with a 3 × 10 WBRT regimen significantly reduced the number of large and micrometastases that developed in vivo, suggesting a role for the microenvironment. Micrometastases derived from tumor cells surviving initial 3 × 10 WBRT demonstrated a trend toward radioresistance upon repeat treatment (p = 0.09). The data confirm the potency of a fractionated 3 × 10 WBRT regimen and identify the brain microenvironment as a potential determinant of radiation efficacy. The data also nominate the Surviving cultures as a potential new translational model for radiotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

SRS:

Stereotactic radiosurgery

TN:

Triple-negative

WBRT:

Whole brain radiation therapy

References

  1. Davis FG, Dolecek TA, McCarthy BJ, Villano JL (2012) Toward determining the lifetime occurrence of metastatic brain tumors estimated from 2007 United States cancer incidence data. Neuro Oncol 14:1171–1177. doi:10.1093/neuonc/nos152

    Article  PubMed Central  PubMed  Google Scholar 

  2. Gavrilovic IT, Posner JB (2005) Brain metastases: epidemiology and pathophysiology. J Neurooncol 75:5–14

    Article  PubMed  Google Scholar 

  3. Heitz F, Harter P, Lueck HJ, Fissler-Eckhoff A, Lorenz-Salehi F, Scheil-Bertram S, Traut A, du Bois A (2009) Triple-negative and HER2-overexpressing breast cancers exhibit an elevated risk and an earlier occurrence of cerebral metastases. Eur J Cancer 45:2792–2798. doi:10.1016/j.ejca.2009.06.027

    Article  CAS  PubMed  Google Scholar 

  4. Brufsky AM, Mayer M, Rugo HS, Kaufman PA, Tan-Chiu E, Tripathy D, Tudor IC, Wang LI, Brammer MG, Shing M, Yood MU, Yardley DA (2011) Central nervous system metastases in patients with HER2-positive metastatic breast cancer: incidence, treatment, and survival in patients from registHER. Clin Cancer Res 17:4834–4843. doi:10.1158/1078-0432.CCR-10-2962

    Article  CAS  PubMed  Google Scholar 

  5. Garcia-Barros M, Paris F, Cordon-Cardo C, Lyden D, Rafii S, Haimovitz-Friedman A, Fuks Z, Kolesnik R (2003) Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 300:1155–1159

    Article  CAS  PubMed  Google Scholar 

  6. DeAngelis LM, Delattre JY, Posner JB (1989) Radiation-induced dementia in patients cured of brain metastases. Neurology 39:789–796

    Article  CAS  PubMed  Google Scholar 

  7. Chang EL, Wefel JS, Hess KR, Allen PK, Lang FF, Kornguth DG, Arbuckle RB, Swint JM, Shiu AS, Maor MH, Meyers CA (2009) Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol 10:1037–1044. doi:10.1016/S1470-2045(09)70263-3

    Article  PubMed  Google Scholar 

  8. Baschnagel A, Wolters PL, Camphausen K (2008) Neuropsychological testing and biomarkers in the management of brain metastases. Radiat Oncol 3:26. doi:10.1186/1748-717X-3-26

    Article  PubMed Central  PubMed  Google Scholar 

  9. Steeg PS, Camphausen KA, Smith QR (2011) Brain metastases as preventive and therapeutic targets. Nat Rev Cancer 11:352–363. doi:10.1038/nrc3053

    Article  CAS  PubMed  Google Scholar 

  10. Zhang S, Huang WC, Zhang L, Zhang C, Lowery FJ, Ding Z, Guo H, Wang H, Huang S, Sahin AA, Aldape KD, Steeg PS, Yu D (2013) Src family kinases as novel therapeutic targets to treat breast cancer brain metastases. Cancer Res 73:5764–5774. doi:10.1158/0008-5472.CAN-12-1803

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Lockman PR, Mittapalli RK, Taskar KS, Rudraraju V, Gril B, Bohn KA, Adkins CE, Roberts A, Thorsheim HR, Gaasch JA, Huang S, Palmieri D, Steeg PS, Smith QR (2010) Heterogeneous blood-tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer. Clin Cancer Res 16:5664–5678. doi:10.1158/1078-0432.CCR-10-1564

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Palmieri D, Duchnowska R, Woditschka S, Hua E, Qian Y, Biernat W, Sosinkska-Mielcarek K, Gril B, Stark AM, Hewitt SM, Liewehr DJ, Steinberg SM, Jassem J, Steeg PS (2014) Profound prevention of experimental brain metastases of breast cancer by temozolomide in an MGMT-dependent manner. Clin Cancer Res 20:2727–2739. doi:10.1158/1078-0432.CCR-13-2588

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Gril B, Palmieri D, Qian Y, Smart D, Ileva L, Liewehr DJ, Steinberg SM, Steeg PS (2011) Pazopanib reveals a role for tumor cell B-raf in the prevention of HER2(+) breast cancer brain metastasis. Clin Cancer Res 17:142–153. doi:10.1158/1078-0432.CCR-10-1603

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Percy DB, Ribot EJ, Chen Y, McFadden C, Simedrea C, Steeg PS, Chambers AF, Foster PJ (2011) In vivo characterization of changing blood-tumor barrier permeability in a mouse model of breast cancer metastasis a complementary magnetic resonance imaging approach. Invest Radiol 46:718–725. doi:10.1097/RLI.0b013e318226c427

    PubMed  Google Scholar 

  15. Zhang L, Ridgway LD, Wetzel MD, Ngo J, Yin W, Kumar D, Goodman JC, Groves MD, Marchetti D (2013) The identification and characterization of breast cancer CTCs competent for brain metastasis. Sci Trans Med 5:180ra48. doi:10.1126/scitranslmed.3005109

    Article  Google Scholar 

  16. McGowan PM, Simedrea C, Ribot EJ, Foster PJ, Palmieri D, Steeg PS, Allan AL, Chambers AF (2011) Notch1 inhibition alters the CD44(hi)/CD24(lo) population and reduces the formation of brain metastases from breast cancer. Mol Cancer Res 9:834–844. doi:10.1158/1541-7786.MCR-10-0457

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Saha D, Dunn H, Zhou H, Harada H, Hiraoka M, Mason RP, Zhao D (2011) In vivo bioluminescence imaging of tumor hypoxia dynamics of breast cancer brain metastasis in a mouse model. J Vis Exp 56. doi: 10.3791/3175

  18. Lorger M, Felding-Habermann B (2010) Capturing changes in the brain microenvironment during initial steps of breast cancer brain metastasis. Am J Pathol 176:2958–2971. doi:10.2353/ajpath.2010.090838

    Article  PubMed Central  PubMed  Google Scholar 

  19. Kienast Y, von Baumgarten L, Fuhrmann M, Klinkert WE, Goldbrunner R, Herms J, Winkler F (2010) Real-time imaging reveals the single steps of brain metastasis formation. Nat Med 16:116–122. doi:10.1038/nm.2072

    Article  CAS  PubMed  Google Scholar 

  20. Bos PD, Zhang XH, Nadal C, Shu W, Gomis RR, Nguyen DX, Minn AJ, van de Vijver MJ, Gerald WL, Foekens JA, Massague J (2009) Genes that mediate breast cancer metastasis to the brain. Nature 459:1005–1009. doi:10.1038/nature08021

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Fitzgerald DP, Palmieri D, Hua E, Hargrave E, Herring JM, Qian Y, Vega-Valle E, Weil RJ, Stark AM, Vortmeyer AO, Steeg PS (2008) Reactive glia are recruited by highly proliferative brain metastases of breast cancer and promote tumor cell colonization. Clin Exp Metastasis 25:799–810. doi:10.1007/s10585-008-9193-z

    Article  PubMed Central  PubMed  Google Scholar 

  22. Chen EI, Hewel J, Krueger JS, Tiraby C, Weber MR, Kralli A, Becker K, Yates JR 3rd, Felding-Habermann B (2007) Adaptation of energy metabolism in breast cancer brain metastases. Cancer Res 67:1472–1486

    Article  CAS  PubMed  Google Scholar 

  23. Heyn C, Ronald JA, Ramadan SS, Snir JA, Barry AM, MacKenzie LT, Mikulis DJ, Palimieri D, Bronder JL, Steeg PS, Yoneda T, MacDonald IC, Chambers AF, Rutt BK, Foster PJ (2006) In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain. Magn Reson Med 56:1001–1010

    Article  PubMed  Google Scholar 

  24. Palmieri D, Bronder JL, Herring JM, Yoneda T, Weil RJ, Stark AM, Kurek R, Vega-Valle E, Feigenbaum L, Halverson D, Vortmeyer AO, Steinberg SM, Aldape K, Steeg PS (2007) Her-2 overexpression increases the metastatic outgrowth of breast cancer cells in the brain. Cancer Res 67:4190–4198

    Article  CAS  PubMed  Google Scholar 

  25. Yoneda T, Williams PJ, Hiraga T, Niewolna M, Nishimura R (2001) A bone seeking clone exhibits different biological properties from the MDA- MB-231 parental human breast cancer cells and a brain-seeking clone in vivo and in vitro. J Bone Miner Res 16:1486–1495

    Article  CAS  PubMed  Google Scholar 

  26. Olariu A, Cleaver KM, Cameron HA (2007) Decreased neurogenesis in aged rats results from loss of granule cell precursors without lengthening of the cell cycle. J Comp Neurol 501:659–667

    Article  PubMed  Google Scholar 

  27. Snyder JS, Choe JS, Clifford MA, Jeurling SI, Hurley P, Brown A, Kamhi JF, Cameron HA (2009) Adult-born hippocampal neurons are more numerous, faster maturing, and more involved in behavior in rats than in mice. J Neurosci 29:14484–14495. doi:10.1523/JNEUROSCI.1768-09.2009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Gril B, Palmieri D, Qian Y, Anwar T, Liewehr DJ, Steinberg SM, Andreu Z, Masana D, Fernandez P, Steeg PS, Vidal-Vanaclocha F (2013) Pazopanib inhibits the activation of PDGFRbeta-expressing astrocytes in the brain metastatic microenvironment of breast cancer cells. Am J Pathol 182:2368–2379. doi:10.1016/j.ajpath.2013.02.043

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Hall EJ, Giaccia AJ (2006) Radiobiology for the radiologist, 6th edn. Lippencott Williams and Wilkins, Philadelphia

    Google Scholar 

  30. Yamazaki JN, Schull WJ (1990) Perinatal loss and neurological abnormalities among children of the atomic bomb. Nagasaki and Hiroshima revisited, 1949 to 1989. JAMA 264:605–609

    Article  CAS  PubMed  Google Scholar 

  31. Andres-Mach M, Rola R, Fike JR (2008) Radiation effects on neural precursor cells in the dentate gyrus. Cell Tissue Res 331:251–262

    Article  PubMed  Google Scholar 

  32. Monje M (2008) Cranial radiation therapy and damage to hippocampal neurogenesis. Dev Disabil Res Rev 14:238–242. doi:10.1002/ddrr.26

    Article  PubMed  Google Scholar 

  33. Wojtowicz JM (2006) Irradiation as an experimental tool in studies of adult neurogenesis. Hippocampus 16:261–266

    Article  CAS  PubMed  Google Scholar 

  34. Baschnagel A, Russo A, Burgan WE, Carter D, Beam K, Palmieri D, Steeg PS, Tofilon P, Camphausen K (2009) Vorinostat enhances the radiosensitivity of a breast cancer brain metastatic cell line grown in vitro and as intracranial xenografts. Mol Cancer Ther 8:1589–1595. doi:10.1158/1535-7163.MCT-09-0038

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Camphausen K, Scott T, Sproull M, Tofilon PJ (2004) Enhancement of xenograft tumor radiosensitivity by the histone deacetylase inhibitor MS-275 and correlation with histone hyperacetylation. Clin Cancer Res 10:6066–6071

    Article  CAS  PubMed  Google Scholar 

  36. Jagannathan J, Bourne TD, Schlesinger D, Yen CP, Shaffrey ME, Laws ER Jr, Sheehan JP (2010) Clinical and pathological characteristics of brain metastasis resected after failed radiosurgery. Neurosurgery 66:208–217. doi:10.1227/01.NEU.0000359318.90478.69

    Article  PubMed  Google Scholar 

  37. Fitzgerald DP, Subramanian P, Deshpande M, Graves C, Gordon I, Qian Y, Snitkovsky Y, Liewehr DJ, Steinberg SM, Paltan-Ortiz JD, Herman MM, Camphausen K, Palmieri D, Becerra SP, Steeg PS (2012) Opposing effects of pigment epithelium-derived factor on breast cancer cell versus neuronal survival: implication for brain metastasis and metastasis-induced brain damage. Cancer Res 72:144–153. doi:10.1158/0008-5472.CAN-11-1904

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Fan Z, Aman Y, Ahmed I, Chetelat G, Landeau B, Ray Chaudhuri K, Brooks DJ, Edison P (2014) Influence of microglial activation on neuronal function in Alzheimer’s and Parkinson’s disease dementia. Alzheimers Dement. doi:10.1016/j.jalz.2014.06.016

    Google Scholar 

  39. Davis DH, Skelly DT, Murray C, Hennessy E, Bowen J, Norton S, Brayne C, Rahkonen T, Sulkava R, Sanderson DJ, Rawlins JN, Bannerman DM, MacLullich AM, Cunningham C (2015) Worsening cognitive impairment and neurodegenerative pathology progressively increase risk for delirium. Am J Geriatr Psychiatry 23:403–415. doi:10.1016/j.jagp.2014.08.005

    Article  PubMed Central  PubMed  Google Scholar 

  40. Kurata T, Lukic V, Kozuki M, Wada D, Miyazaki K, Morimoto N, Ohta Y, Deguchi K, Ideda Y, Kamiya T, Abe K (2014) Telmisartan reduces progressive accumulation of cellular amyloid beta and phosphorylated tau with inflammatory responses in aged spontaneously hypertensive stroke resistant rat. J Stroke Cerebrovasc Dis 23:2580–2590. doi:10.1016/j.jstrokecerebrovasdis.2014.05.023

    Article  PubMed  Google Scholar 

  41. Schnegg CI, Greene-Schloesser D, Kooshki M, Payne VS, Hsu FC, Robbins ME (2013) The PPARdelta agonist GW0742 inhibits neuroinflammation, but does not restore neurogenesis or prevent early delayed hippocampal-dependent cognitive impairment after whole-brain irradiation. Free Radic Biol Med 61:1–9. doi:10.1016/j.freeradbiomed.2013.03.002

    Article  CAS  PubMed  Google Scholar 

  42. Allen AR, Eilertson K, Sharma S, Schneider D, Baure J, Allen B, Rossi S, Raber J, Fike JR (2013) Effects of radiation combined injury on hippocampal function are modulated in mice deficient in chemokine receptor 2 (CCR2). Radiat Res 180:78–88. doi:10.1667/RR3344.1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Jenrow KA, Brown SL, Lapanowski K, Naei H, Kolozsvary A, Kim JH (2013) Selective inhibition of microglia-mediated neuroinflammation mitigates radiation-induced cognitive impairment. Radiat Res 179:549–556. doi:10.1667/RR3026.1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Allen AR, Eilertson K, Chakraborti A, Sharma S, Baure J, Habdank-Kolczkowski J, Allen B, Rosi S, Raber J, Fike JR (2014) Radiation exposure prior to traumatic brain injury induces responses that differ as a function of animal age. Int J Radiat Biol 90:214–223. doi:10.3109/09553002.2014.859761

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Hannesson DK, Howland J, Pollock M, Mohapel P, Wallace AE, Corcoran ME (2001) Dorsal hippocampal kindling produces a selective and enduring disruption of hippocampally mediated behavior. J Neurosci 21:4443–4450

    CAS  PubMed  Google Scholar 

  46. Aimone JB, Li Y, Lee SW, Clemenson DG, Deng W, Gage FH (2014) Regulation and function of adult neurogenesis: from genes to cognition. Physiol Rev 94:991–1026. doi:10.1152/physrev.00004.2014

    Article  CAS  PubMed  Google Scholar 

  47. Cameron HA, Glover LR (2014) Adult neurogenesis: beyond learning and memory. Annu Rev Psychol 66:53–81. doi:10.1146/annurev-psych-010814-015006

    Article  PubMed  Google Scholar 

  48. Fike JR, Rola R, Limoli CL (2007) Radiation response of neural precursor cells. Neurosurg Clin N Am 18:115–127

    Article  PubMed  Google Scholar 

  49. Greene-Schloesser DM, Kooshki M, Payne V, D’Agostino RV Jr, Wheeler KT, Metheny-Barlow LJ, Robbins ME (2014) Cellular response of the rat brain to single doses of (137)Cs gamma rays does not predict its response to prolonged ‘biologically equivalent’ fractionated doses. Int J Radiat Biol 90:790–798. doi:10.3109/09553002.2014.933915

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Lee TC, Greene-Schloesser D, Payne V, Diz DI, Hsu FC, Kooshki M, Mustafa R, Riddle DR, Zhao W, Chan MD, Robbins ME (2012) Chronic administration of the angiotensin-converting enzyme inhibitor, ramipril, prevents fractionated whole-brain irradiation-induced perirhinal cortex-dependent cognitive impairment. Radiat Res 178:46–56

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Parihar VK, Archaya MM, Roa DE, Bosch O, Christie LA, Limoli CL (2014) Defining functional changes in the brain caused by targeted stereotaxic radiosurgery. Transl Cancer Res 3:124–137

    PubMed Central  PubMed  Google Scholar 

  52. Limoli CL, Giedzinski E, Rola R, Otsuka S, Palmer TD, Fike JR (2004) Radiation response of neural precursor cells: linking cellular sensitivity to cell cycle checkpoints, apoptosis and oxidative stress. Radiat Res 161:17–27

    Article  CAS  PubMed  Google Scholar 

  53. Walker AK, Rivera PD, Wang Q, Chuang JC, Tran S, Osborne-Lawrence S, Estill SJ, Starwalt R, Huntington P, Morlock L, Naidoo J, Williams NS, Ready JM, Eisch AJ, Pieper AA, Zigman JM (2015) The P7C3 class of neuroprotective compounds exerts antidepressant efficacy in mice by increasing hippocampal neurogenesis. Mol Psychiatry 20:500–508. doi:10.1038/mp.2014.34

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Bostrom M, Kalm M, Karlsson N, Hellstrom Erkenstam N, Blomgren K (2013) Irradiation to the young mouse brain caused long-term, progressive depletion of neurogenesis but did not disrupt the neurovascular niche. J Cereb Blood Flow Metab 33:935–943. doi:10.1038/jcbfm.2013.34

    Article  PubMed Central  PubMed  Google Scholar 

  55. Zou Y, Leu D, Chui J, Fike JR, Huang TT (2013) Effects of altered levels of extracellular superoxide dismutase and irradiation on hippocampal neurogenesis in female mice. Int J Radiat Oncol Biol Phys 87:777–784. doi:10.1016/j.ijrobp.2013.08.002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Monje ML, Palmer T (2003) Radiation injury and neurogenesis. Curr Opin Neurol 16:129–134

    Article  PubMed  Google Scholar 

  57. Gondi V, Tome WA, Mehta MP (2010) Why avoid the hippocampus? A comprehensive review. Radiother Oncol 97:370–376. doi:10.1016/j.radonc.2010.09.013

    Article  PubMed Central  PubMed  Google Scholar 

  58. Gondi V, Hermann BP, Mehta MP, Tome WA (2013) Hippocampal dosimetry predicts neurocognitive function impairment after fractionated stereotactic radiotherapy for benign or low-grade adult brain tumors. Int J Radiat Oncol Biol Phys 85:348–354. doi:10.1016/j.ijrobp.2012.11.031

    Article  PubMed  Google Scholar 

  59. Wan JF, Zhang SJ, Wang L, Zhao KL (2013) Implications for preserving neural stem cells in whole brain radiotherapy and prophylactic cranial irradiation: a review of 2270 metastases in 488 patients. J Radiat Res 54:285–291. doi:10.1093/jrr/rrs085

    Article  PubMed Central  PubMed  Google Scholar 

  60. Ghia A, Tome WA, Thomas S, Cannon G, Khuntia D, Kuo JS, Mehta MP (2007) Distribution of brain metastases in relation to the hippocampus: implications for neurocognitive functional preservation. Int J Radiat Oncol Biol Phys 68:971–977

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Intramural Research program of the National Cancer Institute and by the Department of Defense Center of Excellence Breast Cancer Research Program Award W81XWH-06-0033. The authors thank Dr. Yong Qian for excellent animal procedures.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to DeeDee Smart or Patricia S. Steeg.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smart, D., Garcia-Glaessner, A., Palmieri, D. et al. Analysis of radiation therapy in a model of triple-negative breast cancer brain metastasis. Clin Exp Metastasis 32, 717–727 (2015). https://doi.org/10.1007/s10585-015-9739-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-015-9739-9

Keywords

Navigation