Skip to main content

Advertisement

Log in

Intravital imaging of CD8+ T cell function in cancer

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Recent technological advances in photonics are making intravital microscopy (IVM) an increasingly powerful approach for the mechanistic exploration of biological processes in the physiological context of complex native tissue environments. Direct, dynamic and multiparametric visualization of immune cell behavior in living animals at cellular and subcellular resolution has already proved its utility in auditing basic immunological concepts established through conventional approaches and has also generated new hypotheses that can conversely be complemented and refined by traditional experimental methods. The insight that outgrowing tumors must not necessarily have evaded recognition by the adaptive immune system, but can escape rejection by actively inducing a state of immunological tolerance calls for a detailed investigation of the cellular and molecular mechanisms by which the anti-cancer response is subverted. Along with molecular imaging techniques that provide dynamic information at the population level, IVM can be expected to make a critical contribution to this effort by allowing the observation of immune cell behavior in vivo at single cell-resolution. We review here how IVM-based investigation can help to clarify the role of cytotoxic T lymphocytes (CTL) in the immune response against cancer and identify the ways by which their function might be impaired through tolerogenic mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ALV:

Antigenic loss variant(s)

APC:

Antigen presenting cell(s)

CTL:

Cytotoxic T lymphocyte(s)

DC:

Dendritic cell(s)

EGFP:

Enhanced green fluorescent protein

FRET:

Foerster resonance energy transfer

HEV:

High endothelial venule(s)

IVM:

Intravital microscopy

LN:

Lymph node(s)

MHC:

Major Histocompatibility Complex

MP-IVM:

Multiphoton intravital microscopy

MPM:

Multiphoton microscopy

MTOC:

Microtubule organizing center

SLO:

Secondary lymphoid organ(s)

SMAC:

Supramolecular activation cluster

TCR:

T cell receptor(s)

Treg:

Regulatory T cell(s)

References

  1. Boon T, Cerottini JC, Van den Eynde B, van der Bruggen P, Van Pel A (1994) Tumor antigens recognized by T lymphocytes. Annu Rev Immunol 12:337–365. doi:10.1146/annurev.iy.12.040194.002005

    Article  PubMed  CAS  Google Scholar 

  2. Pardoll D (2003) Does the immune system see tumors as foreign or self? Annu Rev Immunol 21:807–839. doi:10.1146/annurev.immunol.21.120601.141135

    Article  PubMed  CAS  Google Scholar 

  3. Boon T, Coulie PG, Van den Eynde BJ, van der Bruggen P (2006) Human T cell responses against melanoma. Annu Rev Immunol 24:175–208. doi:10.1146/annurev.immunol.24.021605.090733

    Article  PubMed  CAS  Google Scholar 

  4. Koebel CM, Vermi W, Swann JB, Zerafa N, Rodig SJ, Old LJ et al (2007) Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450:903–907. doi:10.1038/nature06309

    Article  PubMed  CAS  Google Scholar 

  5. Dunn GP, Old LJ, Schreiber RD (2004) The three Es of cancer immunoediting. Annu Rev Immunol 22:329–360. doi:10.1146/annurev.immunol.22.012703.104803

    Article  PubMed  CAS  Google Scholar 

  6. Willimsky G, Blankenstein T (2005) Sporadic immunogenic tumours avoid destruction by inducing T-cell tolerance. Nature 437:141–146. doi:10.1038/nature03954

    Article  PubMed  CAS  Google Scholar 

  7. Willimsky G, Blankenstein T (2007) The adaptive immune response to sporadic cancer. Immunol Rev 220:102–112. doi:10.1111/j.1600-065X.2007.00578.x

    Article  PubMed  CAS  Google Scholar 

  8. Stagg J, Johnstone RW, Smyth MJ (2007) From cancer immunosurveillance to cancer immunotherapy. Immunol Rev 220:82–101. doi:10.1111/j.1600-065X.2007.00566.x

    Article  PubMed  CAS  Google Scholar 

  9. Mantovani A, Romero P, Palucka AK, Marincola FM (2008) Tumour immunity: effector response to tumour and role of the microenvironment. Lancet 371:771–783. doi:10.1016/S0140-6736(08)60241-X

    Article  PubMed  CAS  Google Scholar 

  10. Gajewski TF, Meng Y, Blank C, Brown I, Kacha A, Kline J et al (2006) Immune resistance orchestrated by the tumor microenvironment. Immunol Rev 213:131–145. doi:10.1111/j.1600-065X.2006.00442.x

    Article  PubMed  CAS  Google Scholar 

  11. Khazaie K, von Boehmer H (2006) The impact of CD4+ CD25+ Treg on tumor specific CD8+ T cell cytotoxicity and cancer. Semin Cancer Biol 16:124–136. doi:10.1016/j.semcancer.2005.11.006

    Article  PubMed  CAS  Google Scholar 

  12. Zou W (2005) Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 5:263–274. doi:10.1038/nrc1586

    Article  PubMed  CAS  Google Scholar 

  13. Zou W (2006) Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6:295–307. doi:10.1038/nri1806

    Article  PubMed  CAS  Google Scholar 

  14. Rabinovich GA, Gabrilovich D, Sotomayor EM (2007) Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 25:267–296. doi:10.1146/annurev.immunol.25.022106.141609

    Article  PubMed  CAS  Google Scholar 

  15. Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452:580–589. doi:10.1038/nature06917

    Article  PubMed  CAS  Google Scholar 

  16. Pittet MJ, Grimm J, Berger CR, Tamura T, Wojtkiewicz G, Nahrendorf M et al (2007) In vivo imaging of T cell delivery to tumors after adoptive transfer therapy. Proc Natl Acad Sci USA 104:12457–12461. doi:10.1073/pnas.0704460104

    Article  PubMed  CAS  Google Scholar 

  17. Cahalan MD, Parker I (2008) Choreography of cell motility and interaction dynamics imaged by two-photon microscopy in lymphoid organs. Annu Rev Immunol 26:585–626

    Article  PubMed  CAS  Google Scholar 

  18. Germain RN, Bajenoff M, Castellino F, Chieppa M, Egen JG, Huang AY et al (2008) Making friends in out-of-the-way places: how cells of the immune system get together and how they conduct their business as revealed by intravital imaging. Immunol Rev 221:163–181. doi:10.1111/j.1600-065X.2008.00591.x

    Article  PubMed  CAS  Google Scholar 

  19. Pittet MJ, Mempel TR (2008) Regulation of T-cell migration and effector functions: insights from in vivo imaging studies. Immunol Rev 221:107–129. doi:10.1111/j.1600-065X.2008.00584.x

    Article  PubMed  CAS  Google Scholar 

  20. Ng LG, Mrass P, Kinjyo I, Reiner SL, Weninger W (2008) Two-photon imaging of effector T-cell behavior: lessons from a tumor model. Immunol Rev 221:147–162. doi:10.1111/j.1600-065X.2008.00596.x

    Article  PubMed  CAS  Google Scholar 

  21. Velazquez P, Waite JC, Dustin ML (2007) Dynamics of host defense: the view at the front lines. Nat Immunol 8:1153–1157. doi:10.1038/ni1520

    Article  PubMed  CAS  Google Scholar 

  22. Celli S, Garcia Z, Beuneu H, Bousso P (2008) Decoding the dynamics of T cell-dendritic cell interactions in vivo. Immunol Rev 221:182–187. doi:10.1111/j.1600-065X.2008.00588.x

    Article  PubMed  CAS  Google Scholar 

  23. Malpighi M (1661) De Pulmonibus. Observationes Anatomicae, Bologna

    Google Scholar 

  24. Leeuwenhoek A (1939–1999) Collected letters. Edited and annotated by a committee of Dutch scientists. Swets and Zeitlinger, Amsterdam

  25. Cohnheim J (1889) Lectures on general pathology: a handbook for practitioners and students. The New Sydenham Society, London

    Google Scholar 

  26. Cohnheim J (1867) Über Entzündung und Eiterung. Virchows Arch 40:1–79

    Article  Google Scholar 

  27. Metchnikoff E (1883) Untersuchungen über die Mesodermalen Phagozyten einiger Wirbeltiere. Biol Zent Bl 3:560–565

    Google Scholar 

  28. Gowans JL, Knight EJ (1964) The route of re-circulation of lymphocytes in the rat. Proc R Soc Lond B Biol Sci 159:257–282

    Article  PubMed  CAS  Google Scholar 

  29. Mempel TR, Scimone ML, Mora JR, von Andrian UH (2004) In vivo imaging of leukocyte trafficking in blood vessels and tissues. Curr Opin Immunol 16:406–417. doi:10.1016/j.coi.2004.05.018

    Article  PubMed  CAS  Google Scholar 

  30. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76. doi:10.1126/science.2321027

    Article  PubMed  CAS  Google Scholar 

  31. Cahalan MD, Parker I, Wei SH, Miller MJ (2002) Two-photon tissue imaging: seeing the immune system in a fresh light. Nat Rev Immunol 2:872–880. doi:10.1038/nri935

    Article  PubMed  CAS  Google Scholar 

  32. Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940. doi:10.1038/nmeth818

    Article  PubMed  CAS  Google Scholar 

  33. Svoboda K, Yasuda R (2006) Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 50:823–839. doi:10.1016/j.neuron.2006.05.019

    Article  PubMed  CAS  Google Scholar 

  34. Theer P, Hasan MT, Denk W (2003) Two-photon imaging to a depth of 1000 microm in living brains by use of a Ti:Al2O3 regenerative amplifier. Opt Lett 28:1022–1024. doi:10.1364/OL.28.001022

    Article  PubMed  CAS  Google Scholar 

  35. Saetzler RK, Jallo J, Lehr HA, Philips CM, Vasthare U, Arfors KE et al (1997) Intravital fluorescence microscopy: impact of light-induced phototoxicity on adhesion of fluorescently labeled leukocytes. J Histochem Cytochem 45:505–513

    PubMed  CAS  Google Scholar 

  36. Bousso P, Bhakta NR, Lewis RS, Robey E (2002) Dynamics of thymocyte-stromal cell interactions visualized by two-photon microscopy. Science 296:1876–1880. doi:10.1126/science.1070945

    Article  PubMed  CAS  Google Scholar 

  37. Miller MJ, Wei SH, Parker I, Cahalan MD (2002) Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296:1869–1873. doi:10.1126/science.1070051

    Article  PubMed  CAS  Google Scholar 

  38. Miller MJ, Wei SH, Cahalan MD, Parker I (2003) Autonomous T cell trafficking examined in vivo with intravital two-photon microscopy. Proc Natl Acad Sci USA 100:2604–2609. doi:10.1073/pnas.2628040100

    Article  PubMed  CAS  Google Scholar 

  39. Mempel TR, Henrickson SE, von Andrian UH (2004) T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427:154–159. doi:10.1038/nature02238

    Article  PubMed  CAS  Google Scholar 

  40. Bousso P, Robey E (2003) Dynamics of CD8(+) T cell priming by dendritic cells in intact lymph nodes. Nat Immunol 4:579–585. doi:10.1038/ni928

    Article  PubMed  CAS  Google Scholar 

  41. Hugues S, Fetler L, Bonifaz L, Helft J, Amblard F, Amigorena S (2004) Distinct T cell dynamics in lymph nodes during the induction of tolerance and immunity. Nat Immunol 5:1235–1242. doi:10.1038/ni1134

    Article  PubMed  CAS  Google Scholar 

  42. Lindquist RL, Shakhar G, Dudziak D, Wardemann H, Eisenreich T, Dustin ML et al (2004) Visualizing dendritic cell networks in vivo. Nat Immunol 5:1243–1250. doi:10.1038/ni1139

    Article  PubMed  CAS  Google Scholar 

  43. Okada T, Miller MJ, Parker I, Krummel MF, Neighbors M, Hartley SB et al (2005) Antigen-engaged b cells undergo chemotaxis toward the t zone and form motile conjugates with helper T cells. PLoS Biol 3:e150. doi:10.1371/journal.pbio.0030150

    Article  PubMed  CAS  Google Scholar 

  44. Qi H, Egen JG, Huang AY, Germain RN (2006) Extrafollicular activation of lymph node B cells by antigen-bearing dendritic cells. Science 312:1672–1676. doi:10.1126/science.1125703

    Article  PubMed  CAS  Google Scholar 

  45. Worbs T, Mempel TR, Bolter J, von Andrian UH, Forster R (2007) CCR7 ligands stimulate the intranodal motility of T lymphocytes in vivo. J Exp Med 204:489–495. doi:10.1084/jem.20061706

    Article  PubMed  CAS  Google Scholar 

  46. Cariappa A, Mazo IB, Chase C, Shi HN, Liu H, Li Q et al (2005) Perisinusoidal B cells in the bone marrow participate in T-independent responses to blood-borne microbes. Immunity 23:397–407. doi:10.1016/j.immuni.2005.09.004

    Article  PubMed  CAS  Google Scholar 

  47. Mazo IB, Honczarenko M, Leung H, Cavanagh LL, Bonasio R, Weninger W et al (2005) Bone marrow is a major reservoir and site of recruitment for central memory CD8+ T cells. Immunity 22:259–270. doi:10.1016/j.immuni.2005.01.008

    Article  PubMed  CAS  Google Scholar 

  48. Wei SH, Miller MJ, Cahalan MD, Parker I (2002) Two-photon imaging in intact lymphoid tissue. Adv Exp Med Biol 512:203–208

    PubMed  Google Scholar 

  49. Sims TN, Soos TJ, Xenias HS, Dubin-Thaler B, Hofman JM, Waite JC et al (2007) Opposing effects of PKCtheta and WASp on symmetry breaking and relocation of the immunological synapse. Cell 129:773–785. doi:10.1016/j.cell.2007.03.037

    Article  PubMed  CAS  Google Scholar 

  50. Carrasco YR, Batista FD (2007) B cells acquire particulate antigen in a macrophage-rich area at the boundary between the follicle and the subcapsular sinus of the lymph node. Immunity 27:160–171. doi:10.1016/j.immuni.2007.06.007

    Article  PubMed  CAS  Google Scholar 

  51. Kawakami N, Nagerl UV, Odoardi F, Bonhoeffer T, Wekerle H, Flugel A (2005) Live imaging of effector cell trafficking and autoantigen recognition within the unfolding autoimmune encephalomyelitis lesion. J Exp Med 201:1805–1814. doi:10.1084/jem.20050011

    Article  PubMed  CAS  Google Scholar 

  52. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318. doi:10.1126/science.1110647

    Article  PubMed  CAS  Google Scholar 

  53. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S et al (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758. doi:10.1038/nn1472

    Article  PubMed  CAS  Google Scholar 

  54. Geissmann F, Cameron TO, Sidobre S, Manlongat N, Kronenberg M, Briskin MJ et al (2005) Intravascular immune surveillance by CXCR6 + NKT cells patrolling liver sinusoids. PLoS Biol 3:e113. doi:10.1371/journal.pbio.0030113

    Article  PubMed  CAS  Google Scholar 

  55. Egen JG, Rothfuchs AG, Feng CG, Winter N, Sher A, Germain RN (2008) Macrophage and T cell dynamics during the development and disintegration of mycobacterial granulomas. Immunity 28:271–284. doi:10.1016/j.immuni.2007.12.010

    Article  PubMed  CAS  Google Scholar 

  56. Chieppa M, Rescigno M, Huang AY, Germain RN (2006) Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J Exp Med 203:2841–2852. doi:10.1084/jem.20061884

    Article  PubMed  CAS  Google Scholar 

  57. Zinselmeyer BH, Lynch JN, Zhang X, Aoshi T, Miller MJ (2008) Video-rate two-photon imaging of mouse footpad—a promising model for studying leukocyte recruitment dynamics during inflammation. Inflamm Res 57:93–96. doi:10.1007/s00011-007-7195-y

    Article  PubMed  CAS  Google Scholar 

  58. Mrass P, Takano H, Ng LG, Daxini S, Lasaro MO, Iparraguirre A et al (2006) Random migration precedes stable target cell interactions of tumor-infiltrating T cells. J Exp Med 203:2749–2761. doi:10.1084/jem.20060710

    Article  PubMed  CAS  Google Scholar 

  59. Boissonnas A, Fetler L, Zeelenberg IS, Hugues S, Amigorena S (2007) In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor. J Exp Med 204:345–356. doi:10.1084/jem.20061890

    Article  PubMed  CAS  Google Scholar 

  60. Breart B, Lemaitre F, Celli S, Bousso P (2008) Two-photon imaging of intratumoral CD8 T cell cytotoxic activity during adoptive T cell therapy in mice. J Clin Invest 118:1390–1397. doi:10.1172/JCI34388

    Article  PubMed  CAS  Google Scholar 

  61. Kyewski B, Klein L (2006) A central role for central tolerance. Annu Rev Immunol 24:571–606. doi:10.1146/annurev.immunol.23.021704.115601

    Article  PubMed  CAS  Google Scholar 

  62. Moon JJ, Chu HH, Pepper M, McSorley SJ, Jameson SC, Kedl RM et al (2007) Naive CD4(+) T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity 27:203–213. doi:10.1016/j.immuni.2007.07.007

    Article  PubMed  CAS  Google Scholar 

  63. Arstila TP, Casrouge A, Baron V, Even J, Kanellopoulos J, Kourilsky P (1999) A direct estimate of the human alphabeta T cell receptor diversity. Science 286:958–961. doi:10.1126/science.286.5441.958

    Article  PubMed  CAS  Google Scholar 

  64. von Andrian UH, Mackay CR (2000) T-cell function and migration. Two sides of the same coin. N Engl J Med 343:1020–1034. doi:10.1056/NEJM200010053431407

    Article  Google Scholar 

  65. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252. doi:10.1038/32588

    Article  PubMed  CAS  Google Scholar 

  66. Itano AA, McSorley SJ, Reinhardt RL, Ehst BD, Ingulli E, Rudensky AY et al (2003) Distinct dendritic cell populations sequentially present a subcutaneous antigen to CD4 T cells and stimulate different aspects of cell-mediated immunity. Immunity 19:47–57. doi:10.1016/S1074-7613(03)00175-4

    Article  PubMed  CAS  Google Scholar 

  67. Kissenpfennig A, Henri S, Dubois B, Laplace-Builhe C, Perrin P, Romani N et al (2005) Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity 22:643–654. doi:10.1016/j.immuni.2005.04.004

    Article  PubMed  CAS  Google Scholar 

  68. Allan RS, Smith CM, Belz GT, van Lint AL, Wakim LM, Heath WR et al (2003) Epidermal viral immunity induced by CD8α+ dendritic cells but not by Langerhans cells. Science 301:1925–1928. doi:10.1126/science.1087576

    Article  PubMed  CAS  Google Scholar 

  69. Allan RS, Waithman J, Bedoui S, Jones CM, Villadangos JA, Zhan Y et al (2006) Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming. Immunity 25:153–162. doi:10.1016/j.immuni.2006.04.017

    Article  PubMed  CAS  Google Scholar 

  70. von Andrian UH, Mempel TR (2003) Homing and cellular traffic in lymph nodes. Nat Rev Immunol 3:867–878. doi:10.1038/nri1222

    Article  CAS  Google Scholar 

  71. Springer TA (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76:301–314. doi:10.1016/0092-8674(94)90337-9

    Article  PubMed  CAS  Google Scholar 

  72. Butcher EC, Picker LJ (1996) Lymphocyte homing and homeostasis. Science 272:60–66. doi:10.1126/science.272.5258.60

    Article  PubMed  CAS  Google Scholar 

  73. Ley K, Laudanna C, Cybulsky MI, Nourshargh S (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7:678–689. doi:10.1038/nri2156

    Article  PubMed  CAS  Google Scholar 

  74. Carriere V, Colisson R, Jiguet-Jiglaire C, Bellard E, Bouche G, Al Saati T et al (2005) Cancer cells regulate lymphocyte recruitment and leukocyte-endothelium interactions in the tumor-draining lymph node. Cancer Res 65:11639–11648. doi:10.1158/0008-5472.CAN-05-1190

    Article  PubMed  CAS  Google Scholar 

  75. Mueller SN, Hosiawa-Meagher KA, Konieczny BT, Sullivan BM, Bachmann MF, Locksley RM et al (2007) Regulation of homeostatic chemokine expression and cell trafficking during immune responses. Science 317:670–674. doi:10.1126/science.1144830

    Article  PubMed  CAS  Google Scholar 

  76. Bajenoff M, Egen JG, Koo LY, Laugier JP, Brau F, Glaichenhaus N et al (2006) Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity 25:989–1001. doi:10.1016/j.immuni.2006.10.011

    Article  PubMed  CAS  Google Scholar 

  77. Mempel TR, Junt T, von Andrian UH (2006) Rulers over randomness: stroma cells guide lymphocyte migration in lymph nodes. Immunity 25:867–869. doi:10.1016/j.immuni.2006.11.002

    Article  PubMed  CAS  Google Scholar 

  78. Hayakawa M, Kobayashi M, Hoshino T (1988) Direct contact between reticular fibers and migratory cells in the paracortex of mouse lymph nodes: a morphological and quantitative study. Arch Histol Cytol 51:233–240. doi:10.1679/aohc.51.233

    Article  PubMed  CAS  Google Scholar 

  79. Sixt M, Kanazawa N, Selg M, Samson T, Roos G, Reinhardt DP et al (2005) The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity 22:19–29. doi:10.1016/j.immuni.2004.11.013

    Article  PubMed  CAS  Google Scholar 

  80. Miller MJ, Hejazi AS, Wei SH, Cahalan MD, Parker I (2004) T cell repertoire scanning is promoted by dynamic dendritic cell behavior and random T cell motility in the lymph node. Proc Natl Acad Sci USA 101:998–1003. doi:10.1073/pnas.0306407101

    Article  PubMed  CAS  Google Scholar 

  81. Okada T, Cyster JG (2007) CC chemokine receptor 7 contributes to GI-dependent T cell motility in the lymph node. J Immunol 178:2973–2978

    Google Scholar 

  82. Asperti-Boursin F, Real E, Bismuth G, Trautmann A, Donnadieu E (2007) CCR7 ligands control basal T cell motility within lymph node slices in a phosphoinositide 3-kinase-independent manner. J Exp Med 204:1167–1179. doi:10.1084/jem.20062079

    Article  PubMed  CAS  Google Scholar 

  83. Monks CRF, Freiberg BA, Kupfer H, Sciaky N, Kupfer A (1998) Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 394:82–86. doi:10.1038/27925

    Article  Google Scholar 

  84. Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM et al (1999) The immunological synapse: a molecular machine controlling T cell activation. Science 285:221–227. doi:10.1126/science.285.5425.221

    Article  PubMed  CAS  Google Scholar 

  85. Dustin ML (2008) T-cell activation through immunological synapses and kinapses. Immunol Rev 221:77–89. doi:10.1111/j.1600-065X.2008.00589.x

    Article  PubMed  CAS  Google Scholar 

  86. Stoll S, Delon J, Brotz TM, Germain RN (2002) Dynamic imaging of T cell-dendritic cell interactions in lymph nodes. Science 296:1873–1876. doi:10.1126/science.1071065

    Article  PubMed  Google Scholar 

  87. Miller MJ, Safrina O, Parker I, Cahalan MD (2004) Imaging the single cell dynamics of CD4+ T cell activation by dendritic cells in lymph nodes. J Exp Med 200:847–856. doi:10.1084/jem.20041236

    Article  PubMed  CAS  Google Scholar 

  88. Shakhar G, Lindquist RL, Skokos D, Dudziak D, Huang JH, Nussenzweig MC et al (2005) Stable T cell-dendritic cell interactions precede the development of both tolerance and immunity in vivo. Nat Immunol 6:707–717. doi:10.1038/ni1210

    Article  PubMed  CAS  Google Scholar 

  89. Garcia Z, Pradelli E, Celli S, Beuneu H, Simon A, Bousso P (2007) Competition for antigen determines the stability of T cell-dendritic cell interactions during clonal expansion. Proc Natl Acad Sci USA 104:4553–4558. doi:10.1073/pnas.0610019104

    Article  PubMed  CAS  Google Scholar 

  90. Henrickson SE, Mempel TR, Mazo IB, Liu B, Artyomov MN, Zheng H et al (2008) T cell sensing of antigen dose governs interactive behavior with dendritic cells and sets a threshold for T cell activation. Nat Immunol 9:282–291. doi:10.1038/ni1559

    Article  PubMed  CAS  Google Scholar 

  91. Skokos D, Shakhar G, Varma R, Waite JC, Cameron TO, Lindquist RL et al (2007) Peptide-MHC potency governs dynamic interactions between T cells and dendritic cells in lymph nodes. Nat Immunol 8:835–844. doi:10.1038/ni1490

    Article  PubMed  CAS  Google Scholar 

  92. Tang Q, Adams JY, Tooley AJ, Bi M, Fife BT, Serra P et al (2006) Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nat Immunol 7:83–92. doi:10.1038/ni1289

    Article  PubMed  CAS  Google Scholar 

  93. Tadokoro CE, Shakhar G, Shen S, Ding Y, Lino AC, Maraver A et al (2006) Regulatory T cells inhibit stable contacts between CD4+ T cells and dendritic cells in vivo. J Exp Med 203:505–511. doi:10.1084/jem.20050783

    Article  PubMed  CAS  Google Scholar 

  94. Lyman MA, Aung S, Biggs JA, Sherman LA (2004) A spontaneously arising pancreatic tumor does not promote the differentiation of naive CD8+ T lymphocytes into effector CTL. J Immunol 172:6558–6567

    PubMed  CAS  Google Scholar 

  95. Veldhoen M, Moncrieffe H, Hocking RJ, Atkins CJ, Stockinger B (2006) Modulation of dendritic cell function by naive and regulatory CD4+ T cells. J Immunol 176:6202–6210

    PubMed  CAS  Google Scholar 

  96. Lewkowich IP, Herman NS, Schleifer KW, Dance MP, Chen BL, Dienger KM et al (2005) CD4+, CD25+ T cells protect against experimentally induced asthma and alter pulmonary dendritic cell phenotype and function. J Exp Med 202:1549–1561. doi:10.1084/jem.20051506

    Article  PubMed  CAS  Google Scholar 

  97. Scholer A, Hugues S, Boissonnas A, Fetler L, Amigorena S (2008) Intercellular adhesion molecule–1-dependent stable interactions between T cells and dendritic cells determine CD8+ T cell memory. Immunity 28:258–270. doi:10.1016/j.immuni.2007.12.016

    Article  PubMed  CAS  Google Scholar 

  98. Beyer M, Schultze JL (2006) Regulatory T cells in cancer. Blood 108:804–811. doi:10.1182/blood-2006-02-002774

    Article  PubMed  CAS  Google Scholar 

  99. Mrass P, Weninger W (2006) Immune cell migration as a means to control immune privilege: lessons from the CNS and tumors. Immunol Rev 213:195–212. doi:10.1111/j.1600-065X.2006.00433.x

    Article  PubMed  Google Scholar 

  100. Fisher DT, Chen Q, Appenheimer MM, Skitzki J, Wang WC, Odunsi K et al (2006) Hurdles to lymphocyte trafficking in the tumor microenvironment: implications for effective immunotherapy. Immunol Invest 35:251–277. doi:10.1080/08820130600745430

    Article  PubMed  CAS  Google Scholar 

  101. Luster AD, Alon R, von Andrian UH (2005) Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol 6:1182–1190. doi:10.1038/ni1275

    Article  PubMed  CAS  Google Scholar 

  102. Wu NZ, Klitzman B, Dodge R, Dewhirst MW (1992) Diminished leukocyte-endothelium interaction in tumor microvessels. Cancer Res 52:4265–4268

    PubMed  CAS  Google Scholar 

  103. Fukumura D, Salehi HA, Witwer B, Tuma RF, Melder RJ, Jain RK (1995) Tumor necrosis factor alpha-induced leukocyte adhesion in normal and tumor vessels: effect of tumor type, transplantation site, and host strain. Cancer Res 55:4824–4829

    PubMed  CAS  Google Scholar 

  104. Jain RK (2003) Molecular regulation of vessel maturation. Nat Med 9:685–693. doi:10.1038/nm0603-685

    Article  PubMed  CAS  Google Scholar 

  105. Munn LL (2003) Aberrant vascular architecture in tumors and its importance in drug-based therapies. Drug Discov Today 8:396–403. doi:10.1016/S1359-6446(03)02686-2

    Article  PubMed  Google Scholar 

  106. Baluk P, Hashizume H, McDonald DM (2005) Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev 15:102–111. doi:10.1016/j.gde.2004.12.005

    Article  PubMed  CAS  Google Scholar 

  107. Griffioen AW, Damen CA, Blijham GH, Groenewegen G (1996) Tumor angiogenesis is accompanied by a decreased inflammatory response of tumor-associated endothelium. Blood 88:667–673

    PubMed  CAS  Google Scholar 

  108. Griffioen AW, Damen CA, Martinotti S, Blijham GH, Groenewegen G (1996) Endothelial intercellular adhesion molecule–1 expression is suppressed in human malignancies: the role of angiogenic factors. Cancer Res 56:1111–1117

    PubMed  CAS  Google Scholar 

  109. Piali L, Fichtel A, Terpe HJ, Imhof BA, Gisler RH (1995) Endothelial vascular cell adhesion molecule 1 expression is suppressed by melanoma and carcinoma. J Exp Med 181:811–816. doi:10.1084/jem.181.2.811

    Article  PubMed  CAS  Google Scholar 

  110. Ganss R, Ryschich E, Klar E, Arnold B, Hammerling GJ (2002) Combination of T-cell therapy and trigger of inflammation induces remodeling of the vasculature and tumor eradication. Cancer Res 62:1462–1470

    PubMed  CAS  Google Scholar 

  111. Lugade AA, Sorensen EW, Gerber SA, Moran JP, Frelinger JG, Lord EM (2008) Radiation-induced IFN-gamma production within the tumor microenvironment influences antitumor immunity. J Immunol 180:3132–3139

    PubMed  CAS  Google Scholar 

  112. Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F et al (2005) Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA 102:18538–18543. doi:10.1073/pnas.0509182102

    Article  PubMed  CAS  Google Scholar 

  113. Kaplan DH, Shankaran V, Dighe AS, Stockert E, Aguet M, Old LJ et al (1998) Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci USA 95:7556–7561. doi:10.1073/pnas.95.13.7556

    Article  PubMed  CAS  Google Scholar 

  114. Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ et al (2001) IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410:1107–1111. doi:10.1038/35074122

    Article  PubMed  CAS  Google Scholar 

  115. Dighe AS, Richards E, Old LJ, Schreiber RD (1994) Enhanced in vivo growth and resistance to rejection of tumor cells expressing dominant negative IFN gamma receptors. Immunity 1:447–456. doi:10.1016/1074-7613(94)90087-6

    Article  PubMed  CAS  Google Scholar 

  116. Blankenstein T, Qin Z (2003) The role of IFN-gamma in tumor transplantation immunity and inhibition of chemical carcinogenesis. Curr Opin Immunol 15:148–154. doi:10.1016/S0952-7915(03)00007-4

    Article  PubMed  CAS  Google Scholar 

  117. Celada A, Gray PW, Rinderknecht E, Schreiber RD (1984) Evidence for a gamma-interferon receptor that regulates macrophage tumoricidal activity. J Exp Med 160:55–74. doi:10.1084/jem.160.1.55

    Article  PubMed  CAS  Google Scholar 

  118. Qin Z, Schwartzkopff J, Pradera F, Kammertoens T, Seliger B, Pircher H et al (2003) A critical requirement of interferon gamma-mediated angiostasis for tumor rejection by CD8+ T cells. Cancer Res 63:4095–4100

    PubMed  CAS  Google Scholar 

  119. Kowalczyk DW, Wlazlo AP, Giles-Davis W, Kammer AR, Mukhopadhyay S, Ertl HC (2003) Vaccine-induced CD8+ T cells eliminate tumors by a two-staged attack. Cancer Gene Ther 10:870–878. doi:10.1038/sj.cgt.7700653

    Article  PubMed  CAS  Google Scholar 

  120. Girardi M, Oppenheim D, Glusac EJ, Filler R, Balmain A, Tigelaar RE et al (2004) Characterizing the protective component of the alphabeta T cell response to transplantable squamous cell carcinoma. J Invest Dermatol 122:699–706. doi:10.1111/j.0022-202X.2004.22342.x

    Article  PubMed  CAS  Google Scholar 

  121. Weber JS, Rosenberg SA (1988) Modulation of murine tumor major histocompatibility antigens by cytokines in vivo and in vitro. Cancer Res 48:5818–5824

    PubMed  CAS  Google Scholar 

  122. Lee JK, Sayers TJ, Brooks AD, Back TC, Young HA, Komschlies KL et al (2000) IFN-gamma-dependent delay of in vivo tumor progression by Fas overexpression on murine renal cancer cells. J Immunol 164:231–239

    PubMed  CAS  Google Scholar 

  123. Kupfer A, Mosmann TR, Kupfer H (1991) Polarized expression of cytokines in cell conjugates of helper T cells and splenic B cells. Proc Natl Acad Sci USA 88:775–779. doi:10.1073/pnas.88.3.775

    Article  PubMed  CAS  Google Scholar 

  124. Huse M, Lillemeier BF, Kuhns MS, Chen DS, Davis MM (2006) T cells use two directionally distinct pathways for cytokine secretion. Nat Immunol 7:247–255. doi:10.1038/ni1304

    Article  PubMed  CAS  Google Scholar 

  125. Sambhi SK, Kohonen-Corish MR, Ramshaw IA (1991) Local production of tumor necrosis factor encoded by recombinant vaccinia virus is effective in controlling viral replication in vivo. Proc Natl Acad Sci USA 88:4025–4029. doi:10.1073/pnas.88.9.4025

    Article  PubMed  CAS  Google Scholar 

  126. Dace DS, Chen PW, Niederkorn JY (2007) CD8+ T cells circumvent immune privilege in the eye and mediate intraocular tumor rejection by a TNF-alpha-dependent mechanism. J Immunol 178:6115–6122

    PubMed  CAS  Google Scholar 

  127. Prevost-Blondel A, Roth E, Rosenthal FM, Pircher H (2000) Crucial role of TNF-alpha in CD8 T cell-mediated elimination of 3LL-A9 Lewis lung carcinoma cells in vivo. J Immunol 164:3645–3651

    PubMed  CAS  Google Scholar 

  128. Zhang B, Karrison T, Rowley DA, Schreiber H (2008) IFN-gamma- and TNF-dependent bystander eradication of antigen-loss variants in established mouse cancers. J Clin Invest 118:1398–1404. doi:10.1172/JCI33522

    Article  PubMed  CAS  Google Scholar 

  129. Stoelcker B, Ruhland B, Hehlgans T, Bluethmann H, Luther T, Mannel DN (2000) Tumor necrosis factor induces tumor necrosis via tumor necrosis factor receptor type 1-expressing endothelial cells of the tumor vasculature. Am J Pathol 156:1171–1176

    PubMed  CAS  Google Scholar 

  130. Schuler T, Kammertoens T, Preiss S, Debs P, Noben-Trauth N, Blankenstein T (2001) Generation of tumor-associated cytotoxic T lymphocytes requires interleukin 4 from CD8(+) T cells. J Exp Med 194:1767–1775. doi:10.1084/jem.194.12.1767

    Article  PubMed  CAS  Google Scholar 

  131. Schuler T, Qin Z, Ibe S, Noben-Trauth N, Blankenstein T (1999) T helper cell type 1-associated and cytotoxic T lymphocyte-mediated tumor immunity is impaired in interleukin 4-deficient mice. J Exp Med 189:803–810. doi:10.1084/jem.189.5.803

    Article  PubMed  CAS  Google Scholar 

  132. Dobrzanski MJ, Reome JB, Dutton RW (2001) Role of effector cell-derived IL–4, IL-5, and perforin in early and late stages of type 2 CD8 effector cell-mediated tumor rejection. J Immunol 167:424–434

    PubMed  CAS  Google Scholar 

  133. Huang S, Xie K, Bucana CD, Ullrich SE, Bar-Eli M (1996) Interleukin 10 suppresses tumor growth and metastasis of human melanoma cells: potential inhibition of angiogenesis. Clin Cancer Res 2:1969–1979

    PubMed  CAS  Google Scholar 

  134. Gilliet M, Liu YJ (2002) Generation of human CD8 T regulatory cells by CD40 ligand-activated plasmacytoid dendritic cells. J Exp Med 195:695–704. doi:10.1084/jem.20011603

    Article  PubMed  CAS  Google Scholar 

  135. Slifka MK, Rodriguez F, Whitton JL (1999) Rapid on/off cycling of cytokine production by virus-specific CD8+ T cells. Nature 401:76–79. doi:10.1038/43454

    Article  PubMed  CAS  Google Scholar 

  136. Bossi G, Griffiths GM (1999) Degranulation plays an essential part in regulating cell surface expression of Fas ligand in T cells and natural killer cells. Nat Med 5:90–96. doi:10.1038/4779

    Article  PubMed  CAS  Google Scholar 

  137. He JS, Ostergaard HL (2007) CTLs contain and use intracellular stores of FasL distinct from cytolytic granules. J Immunol 179:2339–2348

    PubMed  CAS  Google Scholar 

  138. Trapani JA, Smyth MJ (2002) Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2:735–747. doi:10.1038/nri911

    Article  PubMed  CAS  Google Scholar 

  139. Rosen D, Li JH, Keidar S, Markon I, Orda R, Berke G (2000) Tumor immunity in perforin-deficient mice: a role for CD95 (Fas/APO–1). J Immunol 164:3229–3235

    PubMed  CAS  Google Scholar 

  140. Seki N, Brooks AD, Carter CR, Back TC, Parsoneault EM, Smyth MJ et al (2002) Tumor-specific CTL kill murine renal cancer cells using both perforin and Fas ligand-mediated lysis in vitro, but cause tumor regression in vivo in the absence of perforin. J Immuno 168:3484–3492

    CAS  Google Scholar 

  141. Caldwell SA, Ryan MH, McDuffie E, Abrams SI (2003) The Fas/Fas ligand pathway is important for optimal tumor regression in a mouse model of CTL adoptive immunotherapy of experimental CMS4 lung metastases. J Immunol 171:2402–2412

    PubMed  CAS  Google Scholar 

  142. Stinchcombe JC, Griffiths GM (2007) Secretory mechanisms in cell-mediated cytotoxicity. Ann Rev Cell Dev Biol 23:495–517. doi:10.1146/annurev.cellbio.23.090506.123521

    Article  CAS  Google Scholar 

  143. Stinchcombe JC, Bossi G, Booth S, Griffiths GM (2001) The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity 15:751–761. doi:10.1016/S1074-7613(01)00234-5

    Article  PubMed  CAS  Google Scholar 

  144. Stinchcombe JC, Majorovits E, Bossi G, Fuller S, Griffiths GM (2006) Centrosome polarization delivers secretory granules to the immunological synapse. Nature 443:462–465. doi:10.1038/nature05071

    Article  PubMed  CAS  Google Scholar 

  145. Millard PJ, Henkart MP, Reynolds CW, Henkart PA (1984) Purification and properties of cytoplasmic granules from cytotoxic rat LGL tumors. J Immunol 132:3197–3204

    PubMed  CAS  Google Scholar 

  146. Tschopp J, Masson D, Stanley KK (1986) Structural/functional similarity between proteins involved in complement- and cytotoxic T-lymphocyte-mediated cytolysis. Nature 322:831–834. doi:10.1038/322831a0

    Article  PubMed  CAS  Google Scholar 

  147. Froelich CJ, Orth K, Turbov J, Seth P, Gottlieb R, Babior B et al (1996) New paradigm for lymphocyte granule-mediated cytotoxicity. Target cells bind and internalize granzyme B, but an endosomolytic agent is necessary for cytosolic delivery and subsequent apoptosis. J Biol Chem 271:29073–29079. doi:10.1074/jbc.271.46.29073

    Article  PubMed  CAS  Google Scholar 

  148. Keefe D, Shi L, Feske S, Massol R, Navarro F, Kirchhausen T et al (2005) Perforin triggers a plasma membrane-repair response that facilitates CTL induction of apoptosis. Immunity 23:249–262. doi:10.1016/j.immuni.2005.08.001

    Article  PubMed  CAS  Google Scholar 

  149. Pipkin ME, Lieberman J (2007) Delivering the kiss of death: progress on understanding how perforin works. Curr Opin Immunol 19:301–308. doi:10.1016/j.coi.2007.04.011

    Article  PubMed  CAS  Google Scholar 

  150. Lieberman J (2003) The ABCs of granule-mediated cytotoxicity: new weapons in the arsenal. Nat Rev Immunol 3:361–370. doi:10.1038/nri1083

    Article  PubMed  CAS  Google Scholar 

  151. Martinvalet D, Zhu P, Lieberman J (2005) Granzyme A induces caspase-independent mitochondrial damage, a required first step for apoptosis. Immunity 22:355–370. doi:10.1016/j.immuni.2005.02.004

    Article  PubMed  CAS  Google Scholar 

  152. Spiotto MT, Rowley DA, Schreiber H (2004) Bystander elimination of antigen loss variants in established tumors. Nat Med 10:294–298. doi:10.1038/nm999

    Article  PubMed  CAS  Google Scholar 

  153. Kägi D, Ledermann B, Bürki K, Seiler P, Odermatt B, Olsen KJ et al (1994) Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 369:31–37. doi:10.1038/369031a0

    Article  PubMed  Google Scholar 

  154. Brunner KT, Mauel J, Cerottini J-C, Chapuis B (1968) Quantitative assay of the lytic action of immune lymphoid cells on 51-Cr-labelled allogeneic target cells in vitro; inhibition of isoantibody and by drugs. Immunology 14:181–196

    PubMed  CAS  Google Scholar 

  155. Sanderson CJ (1976) The mechanism of T cell mediated cytotoxicity II. Morphological studies of cell death by time-lapse microcinematography. Proc R Soc Lond B Biol Sci 192:241–255

    Article  PubMed  CAS  Google Scholar 

  156. Mempel TR, Pittet MJ, Khazaie K, Weninger W, Weissleder R, von Boehmer H et al (2006) Regulatory T cells reversibly suppress cytotoxic T cell function independent of effector differentiation. Immunity 25:129–141. doi:10.1016/j.immuni.2006.04.015

    Article  PubMed  CAS  Google Scholar 

  157. Duggan BL, Cabilio NR, Dickie P, Witmer J, Goping IS, Underhill DA et al (2008) A novel lineage-specific hypersensitive site is essential for position independent granzyme B expression in transgenic mice. Biochem Biophys Res Commun 368:357–363. doi:10.1016/j.bbrc.2008.01.065

    Article  PubMed  CAS  Google Scholar 

  158. Berke G, Sullivan KA, Amos DB (1972) Tumor immunity in vitro: destruction of a mouse ascites tumor through a cycling pathway. Science 177:433–434. doi:10.1126/science.177.4047.433

    Article  PubMed  CAS  Google Scholar 

  159. Matter A (1979) Microcinematographic and electron microscopic analysis of target cell lysis induced by cytotoxic T lymphocytes. Immunology 36:179–190

    PubMed  CAS  Google Scholar 

  160. Rothstein TL, Mage M, Jones G, McHugh LL (1978) Cytotoxic T lymphocyte sequential killing of immobilized allogeneic tumor target cells measured by time-lapse microcinematography. J Immunol 121:1652

    PubMed  CAS  Google Scholar 

  161. Poenie M, Tsien RY, Schmitt-Verhulst A (1987) Sequential activation and lethal hit measured by [Ca++]i in individual cytolytic T cells and targets. EMBO J 6:2223–2232

    PubMed  CAS  Google Scholar 

  162. Barth RJ Jr, Mule JJ, Spiess PJ, Rosenberg SA (1991) Interferon gamma and tumor necrosis factor have a role in tumor regressions mediated by murine CD8+ tumor-infiltrating lymphocytes. J Exp Med 173:647–658. doi:10.1084/jem.173.3.647

    Article  PubMed  CAS  Google Scholar 

  163. Becker C, Pohla H, Frankenberger B, Schuler T, Assenmacher M, Schendel DJ et al (2001) Adoptive tumor therapy with T lymphocytes enriched through an IFN-gamma capture assay. Nat Med 7:1159–1162. doi:10.1038/nm1001-1159

    Article  PubMed  CAS  Google Scholar 

  164. Blankenstein T (2005) The role of tumor stroma in the interaction between tumor and immune system. Curr Opin Immunol 17:180–186. doi:10.1016/j.coi.2005.01.008

    Article  PubMed  CAS  Google Scholar 

  165. Sica A, Bronte V (2007) Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest 117:1155–1166. doi:10.1172/JCI31422

    Article  PubMed  CAS  Google Scholar 

  166. Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124:263–266. doi:10.1016/j.cell.2006.01.007

    Article  PubMed  CAS  Google Scholar 

  167. Ibe S, Qin Z, Schuler T, Preiss S, Blankenstein T (2001) Tumor rejection by disturbing tumor stroma cell interactions. J Exp Med 194:1549–1559. doi:10.1084/jem.194.11.1549

    Article  PubMed  CAS  Google Scholar 

  168. Chen ML, Pittet MJ, Gorelik L, Flavell RA, Weissleder R, von Boehmer H et al (2005) Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-beta signals in vivo. Proc Natl Acad Sci USA 102:419–424. doi:10.1073/pnas.0408197102

    Article  PubMed  CAS  Google Scholar 

  169. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70. doi:10.1016/S0092-8674(00)81683-9

    Article  PubMed  CAS  Google Scholar 

  170. Bui JD, Schreiber RD (2007) Cancer immunosurveillance, immunoediting and inflammation: independent or interdependent processes? Curr Opin Immunol 19:203–208. doi:10.1016/j.coi.2007.02.001

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Drs. Mikael Pittet and Cathryn Nagler for helpful discussions and critical reading of the manuscript. T.R.M. is supported by NIH grant 4 R00 AI073457 - 02 and C.A.B. is supported by a grant from the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten R. Mempel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mempel, T.R., Bauer, C.A. Intravital imaging of CD8+ T cell function in cancer. Clin Exp Metastasis 26, 311–327 (2009). https://doi.org/10.1007/s10585-008-9196-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-008-9196-9

Keywords

Navigation