Skip to main content

Advertisement

Log in

Identification of estrogen-responsive genes involved in breast cancer metastases to the bone

  • Research Paper on
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Bone metastasis is the most common metastasis in breast cancer patients. Clinical observations propose strong association between estrogen receptor (ER)-positive tumors and the development of bone metastases. We hypothesized of biologically diverse sets of hormone-dependent tumors predisposed to bone metastases and of possible role of ER-signaling pathways in the development and progression of bone metastases. We developed a novel in vitro estrogen (E2)-responsive model system, in which breast cancer cells and bone cells express high levels of either ERα or ERβ. Using co-culture approach and gene array technology we identified E2-responsive genes involved in the interaction between cancer cells and bone cells. We detected 13 genes that were altered solely by ERα and 11 genes that were regulated solely by ERβ in cancer cells. Only 5 genes were modified by both ERα and ERβ. Interestingly, the majority of genes in bone cells were altered through ERβ. Two genes, namely MacMarcks and Muc-1, whose changes in expressions in cancer cells in response to E2 were highly significant, were selected for immunohistochemical analysis using tissue microarrays of 59 infiltrating ductal carcinomas. Our results indicated that both MacMarcks and Muc-1 were expressed at high frequency in ER-positive tumors. The correlation between ERα- and ERβ-status of hormone-dependent tumors with combined expression of these two markers might suggest a more aggressive tumor phenotype associated with bone metastases. Further analysis of tissues with clinicopathological characteristics and known bone metastatic disease will indicate potential prognostic values of these and other markers in the development of bone metastases in a subgroup of “bad” hormone-dependent breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ERα:

Estrogen receptor alpha

ERβ:

Estrogen receptor beta

E2:

17-β estradiol

F:

Fulvestrant

Dox:

Doxycycline

MDA-ERα:

MDA-MB-231 cells stably transfected with ERα

MDA-ERβ:

MDA-MB-231 cells stably transfected with ERβ

U2OS:

Osteosarcoma cells

TMA:

Tissue microarrays

ERE:

Estrogen response element

RT-PCR:

Reverse transcriptase polymerase chain reaction

MEM:

Minimum essential medium

DMEM/F12:

Dulbecco’s Modified Eagle’s medium

IHC:

Immunohistochemical

ECM:

Extracellular matrix

MMP:

Matrix metalloproteinase

TGFβ:

Transforming growth factor beta

FGF:

Fibroblast growth factor

OPN:

Osteopontin

MacMarcks:

Myristoylated alanine-rich C kinase substrate

Muc-1:

Mucin 1

PKC:

Protein kinase C

MAP:

Mitogen activated protein

RANK:

Receptor activator of NF-κB

RANKL:

Receptor activator of NF-κB ligand

CFS:

Colony-stimulating factor

ErbB-2:

Erythroblastic leukemia viral oncogene homolog 2

vs:

Versus

References

  1. Campbell FC, Blamey RW, Elston CW et al (1981) Oestrogen-receptor status and sites of metastasis in breast cancer. Br J Cancer 44:456–459

    PubMed  CAS  Google Scholar 

  2. Kamby C, Rasmussen BB, Kristensen B (1989) Oestrogen receptor status of primary breast carcinomas and their metastases. Relation to pattern of spread and survival after recurrence. Br J Cancer 60:252–257

    PubMed  CAS  Google Scholar 

  3. Koenders PG, Beex LVAM, Langens R et al (1991) Steroid hormone receptor activity of primary human breast cancer and patterns of first metastasis. Breast Cancer Res Treat 18:27–32

    Article  PubMed  CAS  Google Scholar 

  4. Fuqua SAW (2002) The role of estrogen receptors in breast cancer metastasis. J Mammary Gland Biol Neopl 6:407–417

    Article  Google Scholar 

  5. Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nature Rev 2:584–593

    Article  CAS  Google Scholar 

  6. Rosol TJ, Tannehill-Gregg SH, LeRoy BE et al (2003) Animal models of bone metastasis. Cancer 97(3 Suppl):748–757

    Article  PubMed  Google Scholar 

  7. Jiang SY, Jordan VC (1992) Growth regulation of estrogen receptor-negative breast cancer cells transfected with complementary DNAs for estrogen receptor. J Natl Cancer Inst 84:580–591

    Article  PubMed  CAS  Google Scholar 

  8. Tonetti DA, Rubenstein R, DeLeon M et al (2003) Stable transfection of an estrogen receptor beta cDNA isoform into MDA-MB-231 breast cancer cells. J Steroid Biochem Mol Biol 87:47–55

    Article  PubMed  CAS  Google Scholar 

  9. Monroe DG, Getz BJ, Johnsen SA et al (2003) Estrogen receptor isoform-specific regulation of endogenous gene expression in human osteoblastic cell lines expressing either ERα or ERβ. J Cell Biochem 90:315–326

    Article  PubMed  CAS  Google Scholar 

  10. Levenson AS, Kwaan HC, Svoboda KM et al (1998) Weiss IM, Sakurai S, Jordan VC. Oestradiol regulation of components of the plasminogen-plasmin system in MDA-MB-231 human breast cancer cell stably expressing the oestrogen receptor. Br J Cancer 78:88–95

    PubMed  CAS  Google Scholar 

  11. Levenson AS, Tonetti DA, Jordan VC (1998) The oestrogen-like effect of 4-hydroxytamoxifen on induction of transforming growth factor alpha mRNA in MDA-MB-231 breast cancer cells stably expressing the oestrogen receptor. Br J Cancer 77:1812–1819

    PubMed  CAS  Google Scholar 

  12. Levenson AS, Gehm BD, Timm Pearce S et al (2003) Resveratrol acts as an estrogen receptor (ER) agonist in breast cancer cells stably transfected with ERα. Int J Cancer 104:587–596

    Article  PubMed  CAS  Google Scholar 

  13. Wang J, Levenson AS, Satcher RL (2006) Identification of a unique set of genes altered during cell-cell contact in an in vitro model of prostate cancer bone metastasis. Int J Mol Med 17:849–856

    PubMed  CAS  Google Scholar 

  14. Levenson AS, Svoboda KM, Pease KM et al (2002) Gene expression profiles of the ER-SERM complex in breast cancer cells expressing wtER. Cancer Res 62:4419–4426

    PubMed  CAS  Google Scholar 

  15. Levenson AS, Jordan VC (1994) Transfection of human estrogen receptor (ER) cDNA into ER-negative mammalian cell lines. J Steroid Biochem Mol Biol 51:229–239

    Article  PubMed  CAS  Google Scholar 

  16. Harris SA, Tau KR, Turner RT et al (1996) Estrogens and progestins. In: Bilezikian JP (ed) Principles of bone biology. Academic Press, San Diego, pp 507–520

    Google Scholar 

  17. Davis VL, Couse JF, Gray TK et al (1994) Correlation between low levels of estrogen receptors and estrogen responsiveness in two rat osteoblast-like cell lines. J Bone Miner Res 9:983–991

    Article  PubMed  CAS  Google Scholar 

  18. Solomayer E-F, Diel IJ, Meyberg GC et al (2000) Metastatic breast cancer: clinical course, prognosis and therapy related to the first site of metastasis. Breast Cancer Res Treat 59:271–278

    Article  PubMed  CAS  Google Scholar 

  19. Coleman RE, Smith P, Rubens RD (1998) Clinical course and prognostic factors following bone recurrence from breast cancer. Br J Cancer 77:336–340

    PubMed  CAS  Google Scholar 

  20. James JJ, Evans AJ, Pinder SE et al (2003) Bone metastases from breast carcinoma: histopathological-radiological correlations and prognostic features. Br J Cancer 89:660–665

    Article  PubMed  CAS  Google Scholar 

  21. Roger P, Sahla ME, Makela S et al (2001) Decreased expression of estrogen receptor beta protein in proliferative preinvasive mammary tumors. Cancer Res 61:2537–2541

    PubMed  CAS  Google Scholar 

  22. Shaw JA, Udokang K, Mosquera JM et al (2002) Estrogen receptors alpha and beta differ in normal human breast and breast carcinomas. J Pathol 198:450–457

    Article  PubMed  CAS  Google Scholar 

  23. Hopp TA, Weiss HL, Parra IS et al (2004) Low levels of estrogen receptor beta protein predict resistance to tamoxifen therapy in breast cancer. Clin Cancer Res 10:7490–7499

    Article  PubMed  CAS  Google Scholar 

  24. Bardin A, Boulle N, Lazennec G et al (2004) Loss of ER beta expression as a common step in estrogen-dependent tumor progression. Endocrine-Related Cancer 11:537–551

    Article  PubMed  CAS  Google Scholar 

  25. Wang Y, Klijn JGM, Zhang Y et al (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365:671–679

    PubMed  CAS  Google Scholar 

  26. Perou CM, Jeffrey SS, van de Rijn M et al (1999) Distinctive gene expression patterns in human mammary epithelial cell and breast cancers. Proc Natl Acad Sci USA 96:9212–9217

    Article  PubMed  CAS  Google Scholar 

  27. Sorlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. PNAS 98:10869–10874

    Article  PubMed  CAS  Google Scholar 

  28. Sorlie T, Tibshirani R, Parker J et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. PNAS 100:8418–8423

    Article  PubMed  CAS  Google Scholar 

  29. van’t Veer LJ, Dai H, van de Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–535

    Article  CAS  Google Scholar 

  30. Weigelt B, Hu Z, He X et al (2005) Molecular portraits and 70-gene prognosis signature are preserved throughout the metastatic process of breast cancer. Cancer Res 65:9155–9158

    Article  PubMed  CAS  Google Scholar 

  31. Ranuncolo SM, Armanasco E, Cresta C et al (2003) Plazma MMP-9 (92 kDA-MMP) activity is useful in the follow-up and in the assessment of prognosis in breast cancer patients. Int J Cancer 106:745–751

    Article  PubMed  CAS  Google Scholar 

  32. Nakopoulou L, Tsirmpa I, Alexandrou P et al (2003) MMP-2 protein in invasive breast cancer and the impact of MMP-2/TIMP-2 phenotype on overall survival. Breast Cancer Res Treat 77:145–155

    Article  PubMed  CAS  Google Scholar 

  33. Dallas SL, Rosser JL, Mundy GR et al (2002) Proteolysis of latent transforming growth factor-beta (TGF-beta)-binding protein-1 by osteoclasts. A cellular mechanism for release of TGF-beta from bone matrix. J Biol Chem 277:21352–21360

    Article  PubMed  CAS  Google Scholar 

  34. Clines GA, Guise TA (2005) Hypercalcaemia of malignancy and basic research on mechanisms responsible for osteolytic and osteoblastic metastasis to bone. Endocrine-Related Cancer 12:549–583

    Article  PubMed  CAS  Google Scholar 

  35. Yue L, Bao Z, Li J (2000) Expression of MacMarcks restores cell adhesion to ICAM-1-coated surface. Cell Adhes Commun 7:359–366

    Article  PubMed  CAS  Google Scholar 

  36. Rakha EA, Boyce RWG, El-Rehim DA et al (2005) Expression of mucins (MUC1, MUC2, MUC3, MUC4, MUC5AC and MUC6) and their prognostic significance in human breast cancer. Modern Pathol 18:1295–1304

    Article  CAS  Google Scholar 

  37. Komori T (2006) Regulation of osteoblast differentiation by transcription factors. J Cell Biochem 99:1233–1239

    Article  PubMed  CAS  Google Scholar 

  38. Yang J, Mani SA, Weinberg RA (2006) Exploring a new twist on tumor metastasis. Cancer Res 66:4549–4552

    Article  PubMed  CAS  Google Scholar 

  39. Omoto Y, Kobayashi S, Inoue S et al (2002) Evaluation of oestrogen receptor β wild-type and variant protein expression, and relationship with clinicopathological factors in breast cancers. Eur J Cancer 38:380–386

    Article  PubMed  CAS  Google Scholar 

  40. Gruvberger S, Ringner M, Chen Y et al (2001) Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns. Cancer Res 61:5979–5984

    PubMed  CAS  Google Scholar 

  41. Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature (Lond) 406:747–752

    Article  CAS  Google Scholar 

  42. Li J, Aderem A (1992) MacMarcks, a novel member of the Marcks family of protein kinase C cubstrates. Cell 70:791–801

    Article  PubMed  CAS  Google Scholar 

  43. Wu M, Chen DF, Sasaoka T et al (1996) Neural tube defects and abnormal brain development in F52-deficient mice. Proc Natl Acad Sci USA 93:2110–2115

    Article  PubMed  CAS  Google Scholar 

  44. Ramsden JJ (2000) Marcks: a case of molecular exaptation? Int J Biochem Cell Biol 32:475–479

    Article  PubMed  CAS  Google Scholar 

  45. Yue L, Lu S, Garces J et al (2000) Protein kinase C-regulated dynamitin-macrophage-enriched myristoylated alanine-rice C kinase substrate interaction is involved in macrophage cell spreading. J Biol Chem 275:23948–23956

    Article  PubMed  CAS  Google Scholar 

  46. Aderem A (1992) The Marcks brothers: a family of protein kinase C substrates. Cell 71:713–716

    Article  PubMed  CAS  Google Scholar 

  47. Blackshear PJ (1993) The Marcks family of cellular protein kinase C substrates. J Biol Chem 268:1501–1504

    PubMed  CAS  Google Scholar 

  48. Ohmitsu M, Fukunaga K, Yamamoto H et al (1999) Phosphorylation of Marcks by mitogen-activared protein kinase on cultured rat hippocampal neurons following stimulation of glutamate receptors. J Biol Chem 274:408–417

    Article  PubMed  CAS  Google Scholar 

  49. Manenti S, Malecaze F, Chap H et al (1998) Overexpression of the myristoylated alanine-rich C kinase substrate in human choroidal melanoma cells affects cell proliferation. Cancer Res 58:1429–1434

    PubMed  CAS  Google Scholar 

  50. Cho SJ, La M-H, Ahn JK et al (2001) Tob-mediated cross-talk between Marcks phosphorylation and erbB-2 activation. Biochem Biophys Res Commun 283:273–277

    Article  CAS  Google Scholar 

  51. Wesseling J, van der Valk SW, Hilkens J (1996) A mechanism for inhibition of E-cadherin-mediated cell-cell adhesion by the membrane-associated mucin episialin/ Muc1. Mol Biol Cell 7:565–577

    PubMed  CAS  Google Scholar 

  52. Jarvinen TA, Pelto-Huikko M, Holli K et al (2000) Estrogen receptor beta is coexpressed with ER alpha and PR and associated with nodal status, grade, and proliferation rate in breast cancer. Am J Pathol 156:29–35

    PubMed  CAS  Google Scholar 

  53. Omoto Y, Inoue S, Ogawa S et al (2001) Clinical value of the wild-type estrogen receptor β expression in breast cancer. Cancer Lett 163:207–212

    Article  PubMed  CAS  Google Scholar 

  54. Bajic VB, Tan SL, Chong A et al (2003) Dragon ERE Finder version 2:a tool for accurate detection and analysis of estrogen response elements in vertebrate genomes. Nucl Acids Res 31:3605–3607

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from Susan G Komen Breast Cancer Foundation (BCTR0504398) to ASL. We thank Dr. T. Spelsberg (Mayo Clinic and Foundation, Rochester, MN) for generous gift of U2OS-ER (α and β) cells and Dr. D. Tonetti (University of Illinois at Chicago, Chicago, IL) for MDA-ERβ cells. We are also grateful to Dr. J-A Gustafsson (Karolinska Institute, Sweden) for providing ERβ antibodies for Western blots.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anait S. Levenson.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Jarrett, J., Huang, CC. et al. Identification of estrogen-responsive genes involved in breast cancer metastases to the bone. Clin Exp Metastasis 24, 411–422 (2007). https://doi.org/10.1007/s10585-007-9078-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-007-9078-6

Keywords

Navigation