Skip to main content

Advertisement

Log in

Distinct Effects of BDNF and NT-3 on the Dendrites and Presynaptic Boutons of Developing Olfactory Bulb GABAergic Interneurons In Vitro

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Brain-derived neurotrophic factor (BDNF) and neurotrophin 3 (NT-3) are known to regulate neuronal morphology and the formation of neural circuits, yet the neuronal targets of each neurotrophin are still to be defined. To address how these neurotrophins regulate the morphological and synaptic differentiation of developing olfactory bulb (OB) GABAergic interneurons, we analyzed the effect of BDNF and NT-3 on GABA+-neurons and on different subtypes of these neurons: tyrosine hydroxylase (TH+); calretinin (Calr+); calbindin (Calb+); and parvalbumin (PVA+). These cells were generated from cultured embryonic mouse olfactory bulb neural stem cells (eOBNSCs) and after 14 days in vitro (DIV), when the neurons expressed TrkB and/or TrkC receptors, BDNF and NT-3 did not significantly change the number of neurons. However, long-term BDNF treatment did produce a longer total dendrite length and/or more dendritic branches in all the interneuron populations studied, except for PVA+-neurons. Similarly, BDNF caused an increase in the cell body perimeter in all the interneuron populations analyzed, except for PVA+-neurons. GABA+- and TH+-neurons were also studied at 21 DIV, when BDNF produced significantly longer neurites with no clear change in their number. Notably, these neurons developed synaptophysin+ boutons at 21 DIV, the size of which augmented significantly following exposure to either BDNF or NT-3. Our results show that in conditions that maintain neuronal survival, BDNF but not NT-3 promotes the morphological differentiation of developing OB interneurons in a cell-type-specific manner. In addition, our findings suggest that BDNF and NT-3 may promote synapse maturation by enhancing the size of synaptic boutons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahmed S, Reynolds BA, Weiss S (1995) BDNF enhances the differentiation but not the survival of CNS stem cell-derived neuronal precursors. J Neurosci 15:5765–5778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alsina B, Vu T, Cohen-Cory S (2001) Visualizing synapse formation in arborizing optic axons in vivo: dynamics and modulation by BDNF. Nat Neurosci 4:1093–1101

    Article  CAS  PubMed  Google Scholar 

  • An JJ, Gharami K, Liao GY, Woo NH, Lau AG, Vanevski F, Torre ER, Jones KR, Feng Y, Lu B, Xu B (2008) Distinct role of long 3’ UTR BDNF mRNA in spine morphology and synaptic plasticity in hippocampal neurons. Cell 134:175–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bath KG, Mandairon N, Jing D, Rajagopal R, Kapoor R, Chen ZY, Khan T, Proenca CC, Kraemer R, Cleland TA, Hempstead BL, Chao MV, Lee FS (2008) Variant brain-derived neurotrophic factor (Val66Met) alters adult olfactory bulb neurogenesis and spontaneous olfactory discrimination. J Neurosci 28:2383–2393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batista-Brito R, Close J, Machold R, Fishell G (2008) The distinct temporal origins of olfactory bulb interneuron subtypes. J Neurosci 28:3966–3975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergami M, Vignoli B, Motori E, Pifferi S, Zuccaro E, Menini A, Canossa M (2013) TrkB signaling directs the incorporation of newly generated periglomerular cells in the adult olfactory bulb. J Neurosci 33:11464–11478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berghuis P, Agerman K, Dobszay MB, Minichiello L, Harkany T, Ernfors P (2006) Brain-derived neurotrophic factor selectively regulates dendritogenesis of parvalbumin-containing interneurons in the main olfactory bulb through the PLCgamma pathway. J Neurobiol 66:1437–1451

    Article  CAS  PubMed  Google Scholar 

  • Bonzano S, Bovetti S, Gendusa C, Peretto P, De MS (2016) Adult Born Olfactory Bulb Dopaminergic Interneurons: Molecular Determinants and Experience-Dependent Plasticity. Front Neurosci 10:189

    Article  PubMed  PubMed Central  Google Scholar 

  • Caffino L, Mottarlini F, Fumagalli F (2020) Born to Protect: Leveraging BDNF Against Cognitive Deficit in Alzheimer’s Disease. CNS Drugs 34:281–297

    Article  PubMed  Google Scholar 

  • Choo M, Miyazaki T, Yamazaki M, Kawamura M, Nakazawa T, Zhang J, Tanimura A, Uesaka N, Watanabe M, Sakimura K, Kano M (2017) Retrograde BDNF to TrkB signaling promotes synapse elimination in the developing cerebellum. Nat Commun 8:195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cohen-Cory S, Fraser SE (1995) Effects of brain-derived neurotrophic factor on optic axon branching and remodelling in vivo. Nature 378:192–196

    Article  CAS  PubMed  Google Scholar 

  • Collin C, Vicario-Abejon C, Rubio ME, Wenthold RJ, McKay RD, Segal M (2001) Neurotrophins act at presynaptic terminals to activate synapses among cultured hippocampal neurons. Eur J Neurosci 13:1273–1282

    Article  CAS  PubMed  Google Scholar 

  • Curto GG, Nieto-Estévez V, Hurtado-Chong A, Valero J, Gomez C, Alonso JR, Weruaga E, Vicario-Abejón C (2014) Pax6 is essential for the maintenance and multi-lineage differentiation of neural stem cells, and for neuronal incorporation into the adult olfactory bulb. Stem Cells Dev 23:2813–2830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Díaz-Guerra E, Pignatelli J, Nieto-Estévez V, Vicario-Abejón C (2013) Transcriptional regulation of olfactory bulb neurogenesis. Anat Rec 296:1364–1382

    Article  Google Scholar 

  • Elmariah SB (2004) Postsynaptic TrkB-Mediated Signaling Modulates Excitatory and Inhibitory Neurotransmitter Receptor Clustering at Hippocampal Synapses. J Neurosci 24:2380–2393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fryer RH, Kaplan DR, Feinstein SC, Radeke MJ, Grayson DR, Kromer LF (1996) Developmental and mature expression of full-length and truncated TrkB receptors in the rat forebrain. J Comp Neurol 374:21–40

    Article  CAS  PubMed  Google Scholar 

  • Galvão RP, Garcia-Verdugo JM, Alvarez-Buylla A (2008) Brain-derived neurotrophic factor signaling does not stimulate subventricular zone neurogenesis in adult mice and rats. J Neurosci 28:13368–13383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gascon E, Vutskits L, Zhang H, Barral-Moran MJ, Kiss PJ, Mas C, Kiss JZ (2005) Sequential activation of p75 and TrkB is involved in dendritic development of subventricular zone-derived neuronal progenitors in vitro. Eur J Neurosci 21:69–80

    Article  CAS  PubMed  Google Scholar 

  • Gottmann K, Mittmann T, Lessmann V (2009) BDNF signaling in the formation, maturation and plasticity of glutamatergic and GABAergic synapses. Exp Brain Res 199:203–234

    Article  CAS  PubMed  Google Scholar 

  • Hurtado-Chong A, Yusta-Boyo MJ, Vergaño-Vera E, Bulfone A, de Pablo F, Vicario-Abejón C (2009) IGF-I promotes neuronal migration and positioning in the olfactory bulb and the exit of neuroblasts from the subventricular zone. Eur J Neurosci 30:742–755

    Article  PubMed  Google Scholar 

  • Imamura F, Greer CA (2009) Dendritic branching of olfactory bulb mitral and tufted cells: regulation by TrkB. PLoS ONE 4:e6729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jacobi S, Soriano J, Segal M, Moses E (2009) BDNF and NT-3 increase excitatory input connectivity in rat hippocampal cultures. Eur J Neurosci 30:998–1010

    Article  PubMed  Google Scholar 

  • Johnson EM, Craig ET, Yeh HH (2007) TrkB is necessary for pruning at the climbing fibre-Purkinje cell synapse in the developing murine cerebellum. J Physiol 582:629–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones KR, Farinas I, Backus C, Reichardt LF (1994) Targeted disruption of the BDNF gene perturbs brain and sensory neuron development but not motor neuron development. Cell 76:989–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lledo PM, Merkle FT, Alvarez-Buylla A (2008) Origin and function of olfactory bulb interneuron diversity. Trends Neurosci 31:392–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu B, Nagappan G, Guan X, Nathan PJ, Wren P (2013) BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases. Nat Rev Neurosci 14:401–416

    Article  CAS  PubMed  Google Scholar 

  • Mackay-Sim A, Chuah MI (2000) Neurotrophic factors in the primary olfactory pathway. Prog Neurobiol 62:527–559

    Article  CAS  Google Scholar 

  • Martinez A, Alcantara S, Borrell V, Del Rio JA, Blasi J, Otal R, Campos N, Boronat A, Barbacid M, Silos-Santiago I, Soriano E (1998) TrkB and TrkC signaling are required for maturation and synaptogenesis of hippocampal connections. J Neurosci 18:7336–7350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marty S, Wehrle R, Sotelo C (2000) Neuronal activity and brain-derived neurotrophic factor regulate the density of inhibitory synapses in organotypic slice cultures of postnatal hippocampus. J Neurosci 20:8087–8095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mast TG, Fadool DA (2012) Mature and precursor brain-derived neurotrophic factor have individual roles in the mouse olfactory bulb. PLoS ONE 7:e31978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsutani S, Yamamoto N (2004) Brain-derived neurotrophic factor induces rapid morphological changes in dendritic spines of olfactory bulb granule cells in cultured slices through the modulation of glutamatergic signaling. Neuroscience 123:695–702

    Article  CAS  PubMed  Google Scholar 

  • McAllister AK, Katz LC, Lo DC (1997) Opposing roles for endogenous BDNF and NT-3 in regulating cortical dendritic growth. Neuron 18:767–778

    Article  CAS  PubMed  Google Scholar 

  • McDole B, Isgor C, Pare C, Guthrie K (2015) BDNF over-expression increases olfactory bulb granule cell dendritic spine density in vivo. Neuroscience 304:146–160

    Article  CAS  PubMed  Google Scholar 

  • McDole B, Berger R, Guthrie K (2020) Genetic Increases in Olfactory Bulb BDNF Do Not Enhance Survival of Adult-Born Granule Cells. Chem Senses 45:3–13

    Article  CAS  PubMed  Google Scholar 

  • Méndez-Gómez HR, Vergaño-Vera E, Abad JL, Bulfone A, Moratalla R, de Pablo F, Vicario-Abejón C (2011) The T-box brain 1 (Tbr1) transcription factor inhibits astrocyte formation in the olfactory bulb and regulates neural stem cell fate. Mol Cell Neurosci 46:108–121

    Article  PubMed  CAS  Google Scholar 

  • Nef S, Lush ME, Shipman TE, Parada LF (2001) Neurotrophins are not required for normal embryonic development of olfactory neurons. Dev Biol 234:80–92

    Article  CAS  PubMed  Google Scholar 

  • Nieto-Estévez V, Pignatelli J, Arauzo-Bravo MJ, Hurtado-Chong A, Vicario-Abejón C (2013) A global transcriptome analysis reveals molecular hallmarks of neural stem cell death, survival, and differentiation in response to partial FGF-2 and EGF deprivation. PLoS ONE 8:e53594

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Orefice LL, Waterhouse EG, Partridge JG, Lalchandani RR, Vicini S, Xu B (2013) Distinct roles for somatically and dendritically synthesized brain-derived neurotrophic factor in morphogenesis of dendritic spines. J Neurosci 33:11618–11632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orefice LL, Shih CC, Xu H, Waterhouse EG, Xu B (2016) Control of spine maturation and pruning through proBDNF synthesized and released in dendrites. Mol Cell Neurosci 71:66–79

    Article  CAS  PubMed  Google Scholar 

  • Park H, Poo MM (2013) Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci 14:7–23

    Article  CAS  PubMed  Google Scholar 

  • Parrish-Aungst S, Shipley MT, Erdelyi F, Szabo G, Puche AC (2007) Quantitative analysis of neuronal diversity in the mouse olfactoty bulb. J Comp Neurol 501:825–836

    Article  CAS  PubMed  Google Scholar 

  • Petridis AK, El Maarouf A (2011) Brain-derived neurotrophic factor levels influence the balance of migration and differentiation of subventricular zone cells, but not guidance to the olfactory bulb. J Clin Neurosci 18:265–270

    Article  CAS  PubMed  Google Scholar 

  • Pignatelli A, Belluzzi O (2017) Dopaminergic Neurones in the Main Olfactory Bulb: An Overview from an Electrophysiological Perspective. Front Neuroanat 11:7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rauti R, Cellot G, D’Andrea P, Colliva A, Scaini D, Tongiorgi E, Ballerini L (2020) BDNF impact on synaptic dynamics: extra or intracellular long-term release differently regulates cultured hippocampal synapses. Mol Brain 13:43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravi N, Sanchez-Guardado L, Lois C, Kelsch W (2017) Determination of the connectivity of newborn neurons in mammalian olfactory circuits. Cell Mol Life Sci 74:849–867

    Article  CAS  PubMed  Google Scholar 

  • Rico B, Xu B, Reichardt LF (2002) TrkB receptor signaling is required for establishment of GABAergic synapses in the cerebellum. Nat Neurosci 5:225–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sairanen M, Lucas G, Ernfors P, Castren M, Castren E (2005) Brain-derived neurotrophic factor and antidepressant drugs have different but coordinated effects on neuronal turnover, proliferation, and survival in the adult dentate gyrus. J Neurosci 25:1089–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez AL, Matthews BJ, Meynard MM, Hu B, Javed S, Cohen Cory S (2006) BDNF increases synapse density in dendrites of developing tectal neurons in vivo. Development 133:2477–2486

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Huertas C, Rico B (2011) CREB-Dependent Regulation of GAD65 Transcription by BDNF/TrkB in Cortical Interneurons. Cereb Cortex 21:777–788

    Article  PubMed  Google Scholar 

  • Shen K, Scheiffele P (2010) Genetics and cell biology of building specific synaptic connectivity. Annu Rev Neurosci 33:473–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh B, Henneberger C, Betances D, Arevalo MA, Rodriguez-Tebar A, Meier JC, Grantyn R (2006) Altered balance of glutamatergic/GABAergic synaptic input and associated changes in dendrite morphology after BDNF expression in BDNF-deficient hippocampal neurons. J Neurosci 26:7189–7200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh KK, Park KJ, Hong EJ, Kramer BM, Greenberg ME, Kaplan DR, Miller FD (2008) Developmental axon pruning mediated by BDNF-p75NTR-dependent axon degeneration. Nat Neurosci 11:649–658

    Article  CAS  PubMed  Google Scholar 

  • Tyler WJ, Pozzo-Miller LD (2001) BDNF enhances quantal neurotransmitter release and increases the number of docked vesicles at the active zones of hippocampal excitatory synapses. J Neurosci 21:4249–4258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vergaño-Vera E, Yusta-Boyo MJ, de Castro F, Bernad A, de Pablo F, Vicario-Abejón C (2006) Generation of GABAergic and dopaminergic interneurons from endogenous embryonic olfactory bulb precursor cells. Development 133:4367–4379

    Article  PubMed  CAS  Google Scholar 

  • Vergaño-Vera E, Méndez-Gómez HR, Hurtado-Chong A, Cigudosa JC, Vicario-Abejón C (2009) Fibroblast growth factor-2 increases the expression of neurogenic genes and promotes the migration and differentiation of neurons derived from transplanted neural stem/progenitor cells. Neuroscience 162:39–54

    Article  PubMed  CAS  Google Scholar 

  • Vergaño-Vera E, Díaz-Guerra E, Rodríguez-Traver E, Méndez-Gomez HR, Solís O, Pignatelli J, Pickel J, Lee SH, Moratalla R, Vicario-Abejón C (2015) Nurr1 blocks the mitogenic effect of FGF-2 and EGF, inducing olfactory bulb neural stem cells to adopt dopaminergic and dopaminergic-GABAergic neuronal phenotypes. Dev Neurobiol 75:823–841

    Article  PubMed  CAS  Google Scholar 

  • Vicario-Abejón C, Johe KK, Hazel TG, Collazo D, McKay RDG (1995) Functions of basic-fibroblast growth factor and neurotrophins in the differentiation of hippocampal neurons. Neuron 15:105–114

    Article  PubMed  Google Scholar 

  • Vicario-Abejón C, Collin C, McKay RD, Segal M (1998) Neurotrophins induce formation of functional excitatory and inhibitory synapses between cultured hippocampal neurons. J Neurosci 18:7256–7271

    Article  PubMed  PubMed Central  Google Scholar 

  • Vicario-Abejón C, Collin C, Tsoulfas P, McKay RD (2000) Hippocampal stem cells differentiate into excitatory and inhibitory neurons. Eur J Neurosci 12:677–688

    Article  PubMed  Google Scholar 

  • Vicario-Abejón C, Owens D, McKay R, Segal M (2002) Role of neurotrophins in central synapse formation and stabilization. Nat Rev Neurosci 3:965–974

    Article  PubMed  CAS  Google Scholar 

  • Vilar M, Mira H (2016) Regulation of Neurogenesis by Neurotrophins during Adulthood: Expected and Unexpected Roles. Front Neurosci 10:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Waterhouse EG, An JJ, Orefice LL, Baydyuk M, Liao GY, Zheng K, Lu B, Xu B (2012) BDNF promotes differentiation and maturation of adult-born neurons through GABAergic transmission. J Neurosci 32:14318–14330

    Article  PubMed  PubMed Central  Google Scholar 

  • Weinandy F, Ninkovic J, Götz M (2011) Restrictions in time and space–new insights into generation of specific neuronal subtypes in the adult mammalian brain. Eur J Neurosci 33:1045–1054

    Article  PubMed  Google Scholar 

  • Wen Y, Zhang Z, Li Z, Liu G, Tao G, Song X, Xu Z, Shang Z, Guo T, Su Z, Chen H, You Y, Li J, Yang Z (2019) The PROK2/PROKR2 signaling pathway is required for the migration of most olfactory bulb interneurons. J Comp Neurol 527:2931–2947

    Article  CAS  PubMed  Google Scholar 

  • Yamada MK, Nakanishi K, Ohba S, Nakamura T, Ikegaya Y, Nishiyama N, Matsuki N (2002) Brain-derived neurotrophic factor promotes the maturation of GABAergic mechanisms in cultured hippocampal neurons. J Neurosci 22:7580–7595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z (2008) Postnatal subventricular zone progenitors give rise not only to granular and periglomerular interneurons but also to interneurons in the external plexiform layer of the rat olfactory bulb. J Comp Neurol 506:347–358

    Article  PubMed  Google Scholar 

  • Zagrebelsky M, Korte M (2014) Form follows function: BDNF and its involvement in sculpting the function and structure of synapses. Neuropharmacology 76:628–638

    Article  CAS  PubMed  Google Scholar 

  • Zagrebelsky M, Godecke N, Remus A, Korte M (2018) Cell type-specific effects of BDNF in modulating dendritic architecture of hippocampal neurons. Brain Struct Funct 223:3689–3709

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M.J. Román (Instituto Cajal-CSIC, Madrid, Spain) for her technical support and Dr. Mark Sefton (BiomedRed, Madrid, Spain) for English editing.

Funding

This study was funded by grants from MINECO (Grant Numbers: SAF2013-47596-R, SAF2016-80419-R and CIBERNED CB06/05/0065), the Comunidad de Madrid (Grant Number S2011/BMD-2336) and Fundación Ramón Areces (Grant Number CIVP18A3941) to C.V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Vicario.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical Approval

All applicable international, national, and institutional guidelines for the care and use of animals were followed: European Union guidelines (directive 2010/63/EU) and Spanish legislation (Law 32/2007 and RD 53/2013), and the protocols were approved by the Ethical Committee of the Consejo Superior de Investigaciones Científicas (CSIC) and of the Comunidad de Madrid, Spain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nieto-Estévez, V., Defterali, Ç. & Vicario, C. Distinct Effects of BDNF and NT-3 on the Dendrites and Presynaptic Boutons of Developing Olfactory Bulb GABAergic Interneurons In Vitro. Cell Mol Neurobiol 42, 1399–1417 (2022). https://doi.org/10.1007/s10571-020-01030-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-020-01030-x

Keywords

Navigation