Skip to main content
Log in

Use of multi-factorial analysis to determine the quality of cellulose nanofibers: effect of nanofibrillation treatment and residual lignin content

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The aim of this work is to study and compare the influence of different nanofibrillation processes on the properties of cellulose nanofibers from wheat straw, and analyze the effect of the lignin in the nanocellulose quality and on the characteristics of the films produced. Wheat straw was subjected to a soda (NaOH) pulping process to obtain unbleached cellulosic pulp. The cellulosic pulp was bleached with NaClO2 in order to remove the lignin of the fiber. Both bleached and unbleached pulps were used to obtain nanocellulose using mechanical pretreatment (PFI refining) and treatments, (high pressure homogenization, twin-screw extruder and ultrafine friction grinder). The effect of the nanofibrillation treatments and the residual lignin content on cellulose nanofiber production was analyzed by means of a deep characterization. A multi-factorial quality index was used to score the cellulose nanofibers produced to enable a benchmarking study between different sources, processes and characteristics. In addition, an energetic study of the production process was carried out for the different treatments. The different nanofibers were used to produce cellulose nanofiber-based films and characterized in order to establish a relationship between the characteristics of cellulose nanofibers and the characteristics of the final product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adel A, El-Shafei A, Ibrahim A, Al-Shemy M (2018) Extraction of oxidized nanocellulose from date palm (Phoenix dactylifera L.) sheath fibers: influence of CI and CII polymorphs on the properties of chitosan/bionanocomposite films. Ind Crop Prod 124:155–165

    CAS  Google Scholar 

  • Agate S, Joyce M, Lucia L, Pal L (2018) Cellulose and nanocellulose-based flexible-hybrid printed electronics and conductive composites—a review. Carbohydr Polym 198:249–260

    CAS  PubMed  Google Scholar 

  • Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydr Polym 84:975–983

    CAS  Google Scholar 

  • Boufi S, González I, Delgado-Aguilar M, Tarrés Q, Pèlach MA, Mutjé P (2016) Nanofibrillated cellulose as an additive in papermaking process: a review. Carbohydr Polym 154:151–166

    CAS  PubMed  Google Scholar 

  • Campano C, Merano N, Balea A, Tarrés Q, Delgado-Aguilar M, Mutjé P, Negro C, Blanco Á (2018) Mechanical and chemical dispersion of nanocelluloses to improve their reinforcing effect on recycled paper. Cellulose 25:269–280

    CAS  Google Scholar 

  • de Campos A, Correa AC, Cannella D, de Teixeira E, Marconcini JM, Dufresne A, Mattoso LHC, Cassland P, Sanadi AR (2013) Obtaining nanofibers from curauá and sugarcane bagasse fibers using enzymatic hydrolysis followed by sonication. Cellulose 20:1491–1500

    Google Scholar 

  • Carvalho DMD, Moser C, Lindström ME, Sevastyanova O (2019) Impact of the chemical composition of cellulosic materials on the nanofibrillation process and nanopaper properties. Ind Crop Prod 127:203–211

    CAS  Google Scholar 

  • Chaker A, Alila S, Mutjé P, Vilar MR, Boufi S (2013) Key role of the hemicellulose content and the cell morphology on the nanofibrillation effectiveness of cellulose pulps. Cellulose 20:2863–2875

    CAS  Google Scholar 

  • Chaker A, Mutjé P, Vilar MR, Boufi S (2014) Agriculture crop residues as a source for the production of nanofibrillated cellulose with low energy demand. Cellulose 21:4247–4259

    CAS  Google Scholar 

  • Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59:102–107

    CAS  Google Scholar 

  • Chen WS, Yu HP, Liu YX, Chen P, Zhang MX, Hai YF (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83:1804–1811

    CAS  Google Scholar 

  • Chen Y, Geng B, Ru J, Tong C, Liu H, Chen J (2017) Comparative characteristics of TEMPO-oxidized cellulose nanofibers and resulting nanopapers from bamboo, softwood, and hardwood pulps. Cellulose 24:4831–4844

    CAS  Google Scholar 

  • Chinga-Carrasco G (2013) Optical methods for the quantification of the fibrillation degree of bleached MFC materials. Micron 48:42–48

    CAS  PubMed  Google Scholar 

  • Chinga-Carrasco G (2018) Potential and limitations of nanocelluloses as components in biocomposite inks for three-dimensional bioprinting and for biomedical devices. Biomacromol 19:701–711

    CAS  Google Scholar 

  • Chinga-Carrasco G, Kuznetsova N, Garaeva M, Leirset I, Galiullina G, Kostochko A, Syverud K (2012) Bleached and unbleached MFC nanobarriers: properties and hydrophobisation with hexamethyldisilazane. J Nanopart Res 14:1–10

    Google Scholar 

  • Chinga-Carrasco G, Averianova N, Kondalenko O, Garaeva M, Petrov V, Leinsvang B, Karlsen T (2014) The effect of residual fibres on the micro-topography of cellulose nanopaper. Micron 56:80–84

    CAS  PubMed  Google Scholar 

  • Claramunt J, Ventura H, Toledo Filho RD, Ardanuy M (2019) Effect of nanocelluloses on the microstructure and mechanical performance of CAC cementitious matrices. Cement Concrete Rese 119:64–76

    CAS  Google Scholar 

  • Delgado-Aguilar M, González I, Tarrés Q, Pèlach MA, Alcalá M, Mutjé P (2016) The key role of lignin in the production of low-cost lignocellulosic nanofibres for papermaking applications. Ind Crop Prod 86:295–300

    CAS  Google Scholar 

  • Desmaisons J, Boutonnet E, Rueff M, Dufresne A, Bras J (2017) A new quarafality index for benchmarking of different cellulose nanofibrils. Carbohydr Polym 174:318–329

    CAS  PubMed  Google Scholar 

  • Domenech T, Peuvrel-Disdier E, Vergnes B (2013) The importance of specific mechanical energy during twin screw extrusion of organoclay based polypropylene nanocomposites. Compos Sci Technol 75:7–14

    CAS  Google Scholar 

  • Du X, Zhang Z, Liu W, Deng Y (2017) Nanocellulose-based conductive materials and their emerging applications in energy devices—a review. Nano Energy 35:299–320

    CAS  Google Scholar 

  • Espinosa E, Tarrés Q, Delgado-Aguilar M, González I, Mutjé P, Rodríguez A (2016) Suitability of wheat straw semichemical pulp for the fabrication of lignocellulosic nanofibres and their application to papermaking slurries. Cellulose 23:837–852

    CAS  Google Scholar 

  • Espinosa E, Domínguez-Robles J, Sánchez R, Tarrés Q, Rodríguez A (2017a) The effect of pre-treatment on the production of lignocellulosic nanofibers and their application as a reinforcing agent in paper. Cellulose 24:2605–2618

    CAS  Google Scholar 

  • Espinosa E, Sánchez R, Otero R, Domínguez-Robles J, Rodríguez A (2017b) A comparative study of the suitability of different cereal straws for lignocellulose nanofibers isolation. Int J Biol 103:990–999

    CAS  Google Scholar 

  • Espinosa E, Bascón-Villegas I, Rosal A, Pérez-Rodríguez F, Chinga-Carraco G, Rodríguez A (2019a) PVA/(ligno)nanocellulose biocomposite films. Effect of residual lignin content on structural, mechanical, barrier and antioxidant properties. Int J Biol Macromol 141:197–206

    CAS  PubMed  Google Scholar 

  • Espinosa E, Rol F, Bras J, Rodríguez A (2019b) Production of lignocellulose nanofibers from wheat straw by different fibrillation methods. Comparison of its viability in cardboard recycling process. J Cean Prod 239:118083

    CAS  Google Scholar 

  • Fall AB, Lindström SB, Sundman O, Ódberg L, Wågberg L (2011) Colloidal stability of aqueous nanofibrillated cellulose dispersions. Langmuir 27:11332–11338

    CAS  PubMed  Google Scholar 

  • Ferrer A, Quintana E, Filpponen I, Solala I, Vidal T, Rodríguez A, Laine J, Rojas OJ (2012) Effect of residual lignin and heteropolysaccharides in nanofibrillar cellulose and nanopaper from wood fibers. Cellulose 19:2179–2193

    CAS  Google Scholar 

  • Ferrer A, Pal L, Hubbe M (2017) Nanocellulose in packaging: advances in barrier layer technologies. Ind Crop Prod 95:574–582

    CAS  Google Scholar 

  • Fillat Ú, Wicklein B, Martín-Sampledro R, Ibarra D, Ruiz-Hitzky E, Valencia C, Sarrión A, Castro E, Eugenio ME (2018) Assessing cellulose nanofiber production from olive tree pruning residue. Carbohydr Polym 179:252–261

    CAS  PubMed  Google Scholar 

  • García A, González Alriols M, Spigno G, Labidi J (2012) Lignin as natural radical scavenger. Effect of the obtaining and purification processes on the antioxidant behaviour of lignin. Biochem Eng J 67:173–185

    Google Scholar 

  • Gogoi BK, Oswalt AJ, Choudhury GS (1996) Reverse screw element(s) and feed. Composition effects during twin-screw extrusion of rice flour and fish muscle blends. J Food Sci 61:590–595

    CAS  Google Scholar 

  • Hubbe MA, Rojas OJ (2008) Colloidal stability and aggregation of lignocellulosic materials in aqueous suspension: a review. BioResources 3(4):1419–1491

    Google Scholar 

  • Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromol 9:1022–1026

    CAS  Google Scholar 

  • Karkhanis SS, Stark NM, Sabo RC, Matuana LM (2018) Water vapor and oxygen barrier properties of extrusion-blown poly(lactic acid)/cellulose nanocrystals nanocomposite films. Compos Part A 114:204–211

    CAS  Google Scholar 

  • Kumode MMN, Bolzon GIM, Magaelhães WLE, Kestur SG (2017) Microfibrillated nanocellulose from balsa tree as potential reinforcement in the preparation of ‘green’ composites with castor seed cake. J Clean Prod 149:1157–1163

    CAS  Google Scholar 

  • Lahtinen P, Liukkonen S, Pere J, Sneck A, Kangas H (2014) A comparative study of fibrillated fibers from different mechanical and chemical pulps. BioResources 9:2115–2127

    Google Scholar 

  • Li JH, Wei XY, Wang QH, Chen JC, Chang G, Kong LX, Su JB, Liu YH (2012) Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydr Polym 90:1609–1613

    CAS  PubMed  Google Scholar 

  • Li W, Wu Q, Zhao X, Huang Z, Cao J, Li J, Liu S (2014) Enhanced thermal and mechanical properties of PVA composites formed with filamentous nanocellulose fibrils. Carbohydr Polym 113:403–410

    CAS  PubMed  Google Scholar 

  • Liang M, Huff HE, Hsieh FH (2002) Evaluating energy consumption and efficiency of a twin-screw extruder. J Food Sci 67:1803–1807

    CAS  Google Scholar 

  • Liu C, Li B, Du H, Lv D, Zhang Y, Yu G, Mu X, Peng H (2016) Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods. Carbohydr Polym 151:716–724

    CAS  PubMed  Google Scholar 

  • Lu Q, Liu W, Yang L, Zu Y, Zu B, Zhu M, Zhang Y, Zhang X, Zhang R, Sun Z, Huang J, Zhang X, Li W (2012) Investigation of the effects of different organosolv pulping methods on antioxidant capacity and extraction efficiency of lignin. Food Chem 131:313–317

    CAS  Google Scholar 

  • Marx-Figini M (1987) The acid-catalyzed degradation of cellulose linters in distinct ranges of degree of polymerization. J Appl Polym Sci 33:2097–2105

    CAS  Google Scholar 

  • Morais JPS, Rosa MDF, de Souza Filho MDSM, Nascimento LD, do Nascimento DM, Cassales AR (2013) Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohydr Polym 91:229–235

    CAS  PubMed  Google Scholar 

  • Moser C, Lindström ME, Henriksson G (2015) Toward industrially feasible methods for following the process of manufacturing cellulose nanofibers. BioResources 10:2360–2375

    CAS  Google Scholar 

  • Naderi A, Lindström T, Sundström J (2015) Repeated homogenization, a route for decreasing the energy consumption in the manufacturing process of carboxymethylated nanofibrillated cellulose? Cellulose 22:1147–1157

    CAS  Google Scholar 

  • Nair SS, Yan N (2015) Bark derived submicron-sized and nano-sized cellulose fibers: from industrial waste to high performance materials. Cabohydr Polym 134:258–266

    CAS  Google Scholar 

  • Nair SS, Zhu JY, Deng Y, Ragauskas AJ (2014a) Characterization of cellulose nanofibrillation by micro grinding. J Nanopart Res 16:2349

    Google Scholar 

  • Nair SS, Zhu JY, Deng Y, Ragasuskas AJ (2014b) High performance green barriers based on nanocellulose. Sustain Chem Process 2:23

    Google Scholar 

  • Pääkkö M, Ankefors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromol 8:1934–1941

    Google Scholar 

  • Rojo E, Peresin MS, Sampson WW, Hoeger IC, Vartiainen J, Laine J, Rojas OJ (2015) Comprehensive elucidation of the effect of residual lignin on the physical, barrier, mechanical and surface properties of nanocellulose films. Green Chem 17:1853–1866

    CAS  Google Scholar 

  • Rol F, Karakashov B, Nechyporchuk O, Terrien M, Meyer V, Dufresne A, Belgacem MN, Bras J (2017) Pilot-scale twin screw extrusion and chemical pretreatment as an energy-efficient method for the production of nanofibrillated cellulose at high solid content. ACS Sustain Chem Eng 5:6524–6531

    CAS  Google Scholar 

  • Rol F, Banvillet G, Meyer V, Petit-Conil M, Bras J (2018) Combination of twin-screw extruder and homogenizer to produce high-quality nanofibrillated cellulose with low energy consumption. J Mater Sci 53:12604–12615

    CAS  Google Scholar 

  • Rol F, Belgacem N, Meyer V, Petit-Conil M, Bras J (2019a) Production of fire-retardant phosphorylated cellulose fibrils by twin-screw extrusion with low energy consumption. Cellulose 26:5635–5651

    CAS  Google Scholar 

  • Rol F, Saini S, Meyer V, Petit-Conil M, Bras J (2019b) Production of cationic nanofibrils of cellulose by twin-screw extrusion. Ind Crop Prod 137:81–88

    CAS  Google Scholar 

  • Rol F, Vergnes B, El Kissi N, Bras J (2019c) Nanocellulose production by twin-screw extrusion: simulation of the screw profile to increase the productivity. ACS Sustain Chem Eng 8:50–59

    Google Scholar 

  • Rol F, Sillard C, Bardet M, Yarava JR, Emsley L, Gablin C, Léonard D, Belgacem N, Bras J (2020) Cellulose phosphorylation comparison and analysis of phosphorate position on cellulose fibers. Carbohydr Polym 229:115294

    CAS  PubMed  Google Scholar 

  • Ruiz-Palomero C, Laura Soriano M, Valcárcel M (2017) Detection of nanocellulose in commercial products and its size characterization using asymmetric flow field-flow fractionation. Microchim Acta 184:1069–1076

    CAS  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromol 8:2485–2491

    CAS  Google Scholar 

  • Sánchez R, Espinosa E, Domínguez-Robles J, Loaiza JM, Rodríguez A (2016) Isolation and characterization of lignocellulose nanofibers from different wheat straw pulps. Int J Biol Macromol 92:1025–1033

    PubMed  Google Scholar 

  • Scatolino MV, Silva DW, Bufalino L, Tonoli GHD, Mendes LM (2017) Influence of cellulose viscosity and residual lignin on water absorpion of nanofibril films. Procedia Eng 200:155–161

    CAS  Google Scholar 

  • Shinoda R, Saito T, Okita Y, Isogai A (2012) Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromol 13:842–849

    CAS  Google Scholar 

  • Siqueira G, Tapin-Lingua S, Bras J, Da Silva Pere DA (2010) Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose 17:1147–1158

    CAS  Google Scholar 

  • Solala I, Volperts A, Andersone A, Dizhbite T, Mironova-Ulmane N, Vehniäinen A, Pere J, Vuorinen T (2012) Mechanoradical formation and its efect on birch kraft pulp during the preparation of nanofibrillated cellulose with Masuko refining. Holzforschung 66:477–483

    CAS  Google Scholar 

  • Solala I, Iglesias MC, Peresin MS (2019) On the potential of lignin-containing cellulose nanofibrils (LCNFs): a review on properties and applications. Cellulose 6:1–25

    Google Scholar 

  • Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18:1097–1111

    CAS  Google Scholar 

  • Tarres Q, Saguer E, Pèlach MA, Alcalá M, Delgado-Aguilar M, Mutjé P (2016) The feasibility of incorporating cellulose micro/nanofibers in papermaking processes: the relevance of enzymatic hydrolysis. Cellulose 23:1433–1445

    CAS  Google Scholar 

  • Tarrés Q, Ehman NV, Vallejos ME, Area MC, Delgado-Aguilar M, Mutjé P (2017a) Lignocellulosic nanofibers from triticale straw: the influence of hemicelluloses and lignin in their production and properties. Carbohydr Polym 163:20–27

    PubMed  Google Scholar 

  • Tarrés Q, Espinosa E, Domínguez-Robles J, Rodríguez A, Mutjé P, Delgado-Aguilar M (2017b) The suitability of banana leaf residue as raw material for the production of high lignin content micro/nano fibers: from residue to value-added products. Ind Crop Prod 99:27–33

    Google Scholar 

  • Tenhunen TM, Peresin MS, Penttilä PA, Pere J, Serimaa R, Tammelin T (2014) Significance of xylan on the stability and water interactions of cellulosic nanofibrils. React Funct Polym 85:157–166

    CAS  Google Scholar 

  • Torstensen JØ, Helberg RML, Deng L, Gregersen ØW, Syverud K (2019) PVA/nanocellulose nanocomposite membranes for CO2 separation from flue gas. Int J Greenh Gas Con 81:93–102

    CAS  Google Scholar 

  • Vallejos ME, Felissia FE, Area MC, Ehman NV, Tarrés Q, Mutjé P (2016) Nanofibrillated cellulose (CNF) from eucalyptus sawdust as a dry strength agent of unrefined eucalyptus handsheets. Carbohydr Polym 139:99–105

    CAS  PubMed  Google Scholar 

  • Wang W, Mozuch MD, Sabo RC, Kersten P, Jy Z, Jin Y (2015) Production of cellulose nanofibrils from bleached eucalyptus fibers by hyperthermostable endoglucanase treatment and subsequent microfluidization. Cellulose 22:351–361

    CAS  Google Scholar 

  • Wang Q, Yao Q, Liu J, Sun J, Zhu Q, Chen H (2019) Processing nanocellulose to bulk materials: a review. Cellulose 26:7585–7617

    CAS  Google Scholar 

  • Yousefi H, Faezipour M, Nishin T, Shakeri A, Ebrahimi G (2011) All-cellulose composite and nanocomposite made from partially dissolved micro- and nanofibers of canola straw. Polym J 43:559–564

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Spain’s DGICyT, MICINN for funding this research within the framework of the Projects CTQ2016-78729-R and supported by the Spanish Ministry of Science and Education through the National Program FPU (Grant Number FPU14/02278), and also to the staff of the Central Service for Research Support (SCAI) at the University of Córdoba.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Espinosa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2800 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espinosa, E., Rol, F., Bras, J. et al. Use of multi-factorial analysis to determine the quality of cellulose nanofibers: effect of nanofibrillation treatment and residual lignin content. Cellulose 27, 10689–10705 (2020). https://doi.org/10.1007/s10570-020-03136-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03136-3

Keywords

Navigation