Skip to main content

Advertisement

Log in

Lead removal from water using carboxycellulose nanofibers prepared by nitro-oxidation method

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Carboxycellulose nanofibers were extracted from untreated jute using a simple nitro-oxidation method based on nitric acid/sodium nitrite. The characteristics of nitro-oxidized carboxycellulose nanofibers (NOCNF) with low crystallinity (35%), high carboxylate content (1.15 mmol/g) and high surface charge (− 70 mV) made them an excellent substrate for Pb(II) ion removal from water. For example, a low concentration of NOCNF suspension (0.23 wt%) could remove a wide range of Pb(II) ions ranging from 50 to 5000 ppm in a short time-interval (< 5 min) at room temperature and pH ~ 7, where the adsorption efficiency of NOCNF was found to be 2270 mg/g based on the Langmuir isotherm analysis. The high removal efficiency of NOCNF was due to the combined effects of adsorption (dominated at Pb(II) concentration ≤ 1000 ppm) and mineralization of lead hydroxide (Pb(OH)2) crystals at high Pb(II) concentration (> 1000 ppm). Evidence of nanoscale lead hydroxide crystallization, induced by the lead(II)-NOCNF aggregated scaffold, was confirmed by FTIR, UV–visible spectroscopy, SEM/EDS, WAXD and TEM measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abraham E, Kam D, Nevo Y, Slattegard R, Rivkin A, Lapidot S, Shoseyov O (2016) Highly modified cellulose nanocrystals and formation of epoxy-nanocrystalline cellulose (CNC) nanocomposites. ACS Appl Mater Interfaces 8(41):28086–28095

    Article  CAS  Google Scholar 

  • Adel AM (2016) Incorporation of nano-metal particles with paper matrices. Interdiscip J Chem 1(2):36–46

    Article  Google Scholar 

  • Ahmedna M, Marshall WE, Husseiny AA, Rao RM, Goktepe I (2004) The use of nutshell carbons in drinking water filters for removal of trace metals. Water Res 38(4):1062–1068

    Article  CAS  Google Scholar 

  • Alatalo SM, Pileidis F, Makila E, Sevilla M, Repo E, Salonen J, Sillanpaa M, Titirici MM (2015) Versatile cellulose-based carbon aerogel for the removal of both cationic and anionic metal contaminants from water. ACS Appl Mater Interfaces 7(46):25875–25883

    Article  CAS  Google Scholar 

  • Allaire M, Yang LJ (2011) Biomolecular solution x-ray scattering at the national synchrotron light source. Synchrotron Radiat 18:41–44

    Article  CAS  Google Scholar 

  • Bansode RR, Losso JN, Marshall WE, Rao JN, Portier RJ (2003) Adsorption of metal ions by pecan shell-based granular activated carbons. Bioresour Technol 89(2):115–119

    Article  CAS  Google Scholar 

  • Bektas N, Agim BK, Kara AS (2004) Kinetic and equilibrium studies in removing lead ions from aqueous solution by natural sepiolite. J Hazard Mater B112:115–122

    Article  Google Scholar 

  • Boufi S, Ferraria AM, Botelho doRego AM, Battaglini N, Herbst F, Vilar MR (2011) Surface functionalisation of cellulose with noble metals nanoparticles through a selective nucleation. Carbohydr Polym 86(4):1586–1594

    Article  CAS  Google Scholar 

  • Cao C, Qu J, Wei F, Liu H, Song W (2012) Adsorption capacity and mechanism of flowerlike magnesium oxide nanostructures for lead and cadmium ions. ACS Appl Mater Interfaces 4(8):4283–4287

    Article  CAS  Google Scholar 

  • Cheng J, Zou X, Meng X, Yang G, Lu X, Wei C, Sun Z, Feng H, Yang Y (2010) Lead hydroxide nanowires obtained from lead nitrate solution by adding chloride ions. Adv Mater Res 123–125:719–722

    Article  Google Scholar 

  • da Silva Perez D, Montanari S, Vignon MR (2003) TEMPO-mediated oxidation of cellulose III. Biomacromol 4(5):1417–1425

    Article  Google Scholar 

  • Demirbas A (2004) Adsorption of lead and cadmium ions in a aqueous solutions onto modified lignin from alkali glycerol delignification. J Hazard Mater B109:221–226

    Article  Google Scholar 

  • Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16(6):220–227

    Article  CAS  Google Scholar 

  • Fan YM, Saito T, Isogai A (2008) Chitin nanocrystals prepared by TEMPO-mediated oxidation of α-chitin. Biomacromol 9(1):192–198

    Article  CAS  Google Scholar 

  • Ferro-García MA, Rivera-Utrilla J, Bautista-Toledo I, Mingorance MD (1990) Removal of lead from water by activated carbons. Carbon 28(4):545–552

    Article  Google Scholar 

  • Galland S, Andersson RL, Salajkov M, StromV Olsson RT, Berglund LA (2013) Cellulose nanofibers decorated with magnetic nanoparticle–synthesis, structure and use in magnetized high toughness membranes for a prototype loudspeaker. J Mater Chem C 1(47):7963–7972

    Article  CAS  Google Scholar 

  • Gerçel O, Gerçel HF (2007) Adsorption of lead(II) ions from aqueous solutions by activated carbon prepared from biomass plant material of Euphorbia rigida. Chem Eng J 132:289–297

    Article  Google Scholar 

  • Gruber HE, Gonick HC, Khalil-Manesh F, Sanchez TV, Motsinger S, Meyer M, Sharp CF (1997) Osteopenia induced by long-term, low- and high-level exposure of the adult rat to lead. Miner Electrolyte Metab 23(2):645–673

    Google Scholar 

  • Hexemer A, Bras W, Glossinger J, Schaible E, Gann E, Kirian R, MacDowell A, Church M, Rude B, Padmore H (2010) A SAXS/WAXS/GISAXS beamline with multilayer monochromator. J Phys Conf Ser 247(1):1–11

    Google Scholar 

  • Hokkanen S, Repo E, Sillanpaa M (2013) Removal of heavy metals from aqueous solutions by succinic anhydride modified mercerized nanocellulose. Chem Eng J 223:40–47

    Article  CAS  Google Scholar 

  • Hrasawa I, Mikani T, Katayama A, Sakuma T (2006) Strategy to obtain nm size crystals through precipattion in the presence of polyelectrolyte. Chem Eng Technol 29(2):212–214

    Article  Google Scholar 

  • Huang WJ, Lo JS (2004) Synthesis and efficiency of a new chemical fixation agent for stabilizing MSWI fly ash. J Hazard Mater B 112(1–2):79–86

    Article  CAS  Google Scholar 

  • Ilavsky J (2012) Nika: software for two-dimensional data reduction. J Appl Crystallogr 45(2):324–328

    Article  CAS  Google Scholar 

  • Issabayeva G, Aroua MK, Sulaiman NMN (2006) Removal of lead from aqueous solutions on palm shell activated carbon. Bioresour Technol 97(18):2350–2355

    Article  CAS  Google Scholar 

  • Kardam A, Rohit Raj K, Srivastava S, Srivastava MM (2014) Nanocellulose fibers for biosorption of cadmium, nickel, and lead ions from aqueous solution. Clean Technol Environ Policy 16(2):385–393

    Article  CAS  Google Scholar 

  • Kim R, Rotnitzky A, Sparrow D, Weiss ST, Wager C, Hu H (1996) A Longitudinal study of low-level lead exposure and impairment of renal function the normative aging study. JAMA 275(15):1177–1181

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem 44(22):3358–3393

    Article  CAS  Google Scholar 

  • Kokol V, Bozic M, Vogrincic Mathew AP (2015) Characterisation and properties of homo- and heterogenously phosphorylated nanocellulose. Carbohydr Polym 125:301–313

    Article  CAS  Google Scholar 

  • Kuch A, Wagner I (1983) Mass transfer model to describe lead concentrations in drinking water. Water Res 17(10):1303–1307

    Article  CAS  Google Scholar 

  • Lee MY, Park JM, Yang JW (1997) Micro precipitation of lead on the surface of crab shell particles. Process Biochem 32(8):671–677

    Article  CAS  Google Scholar 

  • Liu Y, Wang W, Wang A (2010) Adsorption of lead ions from aqueous solution by using carboxymethyl cellulose-g-poly (acrylic acid)/attapulgite hydrogel composites. Desalination 259:258–264

    Article  CAS  Google Scholar 

  • Liu J, Si J, Zhang Q, Zeng J, Han C, Shao G (2011) Preparation of negatively charged hybrid adsorbents and their applications for Pb2+ removal. Ind Eng Chem Res 50:8645–8657

    Article  CAS  Google Scholar 

  • Lustberg M, Silbergeld E (2002) Blood lead levels and mortality. Arch Intern Med 162(21):2443–2449

    Article  CAS  Google Scholar 

  • Ma H, Hsiao B, Chu B (2012) Ultra-fine cellulose nanofibers as efficient adsorbents for removal of UO2 2+ in water. ACS Macro Lett 1(1):213–216

    Article  CAS  Google Scholar 

  • Malik DJ, Strelko V Jr, Streat M, Puziy AM (2006) Characterization of novel modified active carbons and marine algal biomass for the selective adsorption of lead. Water Res 36(6):1527–1538

    Article  Google Scholar 

  • McMichael AJ, Johnson HM (1982) Long-term mortality profile of heavily-exposed lead smelter workers. J Occup Med 24(5):375–378

    Article  CAS  Google Scholar 

  • Michaels D, Zoloth SR, Stern FB (1991) Does low-level lead exposure increase risk of death? A mortality study of newspaper printers. Int J Epidemiol 20(4):978–983

    Article  CAS  Google Scholar 

  • Musyoka S, Ngila J, Moodley B, Petrek L, Kindness A (2011) Remediation studies of trace metals in natural and treated water using surface modified biopolymer nanofibers. Anal Lett 44(11):1925–1936

    Article  CAS  Google Scholar 

  • Naderi A, Lindstrom T, Petterson P (2014) The state of carboxymethylated nanofibrils after homogenization-aided dilution from concentrated suspensions: a rheological perspective. Cellulose 21(4):2357–2368

    Article  CAS  Google Scholar 

  • Needleman HL, Gatsonis CA (1990) Low-level lead exposure and the IQ of children a meta-analysis of modern studies. JAMA 263(5):673–678

    Article  CAS  Google Scholar 

  • Quek SY, Wase DAJ, Forster CF (1998) The use of sago waste for the sorption of lead and copper. Water SA 24(3):251–256

    CAS  Google Scholar 

  • Rothenberg SJ, Kondrashov V, Manalo M, Jiang J, Cuellar R, Garcia M, Reynos B, Reyes S, Diaz M, Todd AC (2002) Increases in hypertension and blood pressure during pregnancy with increased bone lead levels. Am J Epidemiol 156(12):1079–1087

    Article  Google Scholar 

  • Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006a) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromol 7(6):1687–1691

    Article  CAS  Google Scholar 

  • Saito T, Okita Y, Nge TT, Sugiyama J, Isogai A (2006b) TEMPO-mediated oxidation of native cellulose: microscopic analysis of fibrous fraction in the oxidized products. Carbohydr Polym 65:435–440

    Article  CAS  Google Scholar 

  • Schock MR (1989) Understanding corrosion control strategies for lead. J Am Water Works Assoc 81(7):88–100

    Article  CAS  Google Scholar 

  • Schwartz J (1991) Lead blood pressure, and cardiovascular disease in men and women. Environ Health Perspect 91:71–75

    Article  CAS  Google Scholar 

  • Schwartz J (1994) Societal benefits of reducing lead exposure. Environ Res 66(1):105–124

    Article  CAS  Google Scholar 

  • Sharma PR, Joshi R, Sharma SK, Hsiao BS (2017) A simple approach to prepare carboxycellulose nanofibers from untreated biomass. Biomacromol 18(8):2333–2342

    Article  CAS  Google Scholar 

  • Shen W, Chen S, Shi S, Li X, Zhang X, Hu W, Wang H (2009) Adsorption of Cu(II) and Pb(II) onto diethylenetriamine bacterial cellulose. Carbohydr Polym 75(1):110–114

    Article  CAS  Google Scholar 

  • Shinoda R, Saito T, Okita Y, Isogai A (2012) Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromol 13:842–849

    Article  CAS  Google Scholar 

  • Su Q, Pan B, Pan B, Zhang Q, Zhang W, Lv L, Wang X, Wu J, Zhang Q (2009) Fabrication of polymer-supported nanosized hydrous manganese dioxide (HMO) for enhanced lead removal from waters. Sci Total Environ 407(21):5471–5477

    Article  CAS  Google Scholar 

  • Su Y, Burger C, Ma H, Chu B, Hsiao BS (2015) Exploring the nature of cellulose microfibrils Biomacromolecules. Biomacromolecules 16(4):1201–1209

    Article  CAS  Google Scholar 

  • Tibbets J (2000) Water world 2000. Environ Health Perspect 108(2):A69–A73

    Google Scholar 

  • Wang Y, Wang G, Wang H, Liang C, Cai W, Zhang L (2010) Chemical-template synthesis of micro/nanoscale magnesium silicate hollow spheres for waste-water treatment. Chem Eur J 16:3497–3503

    Article  CAS  Google Scholar 

  • WHO (2016) Lead poisoning and health. http://www.who.int/mediacentre/factsheets/fs379/en/. Accessed 19 Feb 17

  • Wilson K, Yang H, Seo CW, Marshall WE (2006) Select metal adsorption by activated carbon made from peanut shells. Bioresour Technol 97(18):2266–2270

    Article  CAS  Google Scholar 

  • Winder C (1989) Reproductive and chromosomal effects of occupational exposure to lead in the male. Reprod Toxicol 3(4):221–233

    Article  CAS  Google Scholar 

  • Yang R, Aubrecht KB, Ma HY, Wang R, Grubbs RB, Hsiao BS, Chu B (2014) Thiol-modified cellulose nanofibrous composite membranes for chromium(VI) and lead(II) adsorption. Polymer 55(5):1167–1176

    Article  CAS  Google Scholar 

  • Yousif AM, Zaid IA (2016) Fast and selective adsorption of As(V) on prepared modified cellulose containing Cu(II) moieties. Arab J Chem Eng 9(5):607–615

    Article  CAS  Google Scholar 

  • Zhang K, Cheung WH, Valix M (2005) Adsorption of lead(II) and cadmium (II) ions from aqueous solutions by adsorption by adsorption on activated carbon prepared from cashew shells. Chemosphere 60(8):1129–1140

    Article  CAS  Google Scholar 

  • Zhang Z, Sebe G, Rentsch D, Zimmermann T, Tingaut P (2014) Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem Mater 26(8):2659–2668

    Article  CAS  Google Scholar 

  • Zhou D, Zhang L, Guo S (2005) Mechanisms of lead biosorption on cellulose/chitin beads. Water Res 39:3755–3762

  • Zhou D, Zhang L, Guo S (2015) Mechanisms of lead biosorption on cellulose/chitin beads. Water Res 39:3755–3762

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the SusChEM Program of the National Science Foundation (DMR-1409507) and a grant from Electric Power Research Institute (EPRI-77846) for financial support. In addition, the authors would like to thank Susan von Horn (iLab-Stony Brook University, USA), Dr. Chung-Chueh Chang and Ya-Chen Chuang (ThINC facility at AERTC, Stony Brook University, USA) for conducting the TEM measurement, Dr. Jim Quinn (Materials Science and Engineering, Stony Brook University) for SEM analysis, and Dr. David Hirschberg (SoMAS, Stony Brook University) for conducting ICP-MS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin S. Hsiao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 690 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, P.R., Chattopadhyay, A., Zhan, C. et al. Lead removal from water using carboxycellulose nanofibers prepared by nitro-oxidation method. Cellulose 25, 1961–1973 (2018). https://doi.org/10.1007/s10570-018-1659-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1659-9

Keywords

Navigation