Skip to main content
Log in

Coating of silver nanoparticles on jute fibre by in situ synthesis

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A novel method has been developed to coat silver nanoparticles on the surface of jute fibre by in situ synthesis while exploring the inherent reducing and metal-binding properties of jute fibre. The in situ synthesis and subsequent coating of silver nanoparticles on the surface of jute fibre were assessed by SEM, EDX spectra, XRD spectra, ICP-AES, AFM, TGA spectra, FTIR spectra and colourimetric values. The results showed that silver nanoparticles of 40–100 nm formed and coated the surface of the jute fibre. Moreover, the silver nanoparticle-coated jute fabric showed resistance against Bacillus subtilis and Escherichia coli and also had washing durability of up to 15 home launderings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • AATCC (2003a) AATCC test method 135-1985: colour measurement of textiles: instrumental. Technical Manual of the AATCC, Research Triangle Park, USA

  • AATCC (2003b) AATCC test method 61-1996: colour fastness to laundering: home and commercial: accelerated. Technical manual of the AATCC, Research Triangle Park, USA

  • AATCC (2004) AATCC test method 147-2004: antibacterial activity assessment of textile materials–parallel streak method. Technical Manual of the AATCC, Research Triangle Park, USA

  • Abidi N, Hequet E, Tarimala S, Dai LL (2007) Cotton fabric surface modification for improved uv-radiation protection using sol-gel process. J Appl Polym Sci 104(1):111–117

    Article  CAS  Google Scholar 

  • Adel AM, Abb El-Wahab ZH, Ibrahim AA, Al-Shemy MT (2011) Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part II: Physicochemical properties. Carbohydr Polym 83(2):676–687

    Article  CAS  Google Scholar 

  • Ammayappan L, Nayak LK, Ray DP, Das S, Roy AK (2013) Functional finishing of Jute textiles—an overview in India. J Nat Fibers 10(4):390–413

    Article  CAS  Google Scholar 

  • Ashraf S, Saif-ur-Rehman Sher F, Khalid ZM, Mehmood M, Hussain I (2014) Synthesis of cellulose–metal nanoparticle composites: development and comparison of different protocols. Cellulose 21(1):395–405

    Article  CAS  Google Scholar 

  • ASTM (2011) ASTM D5035-11, standard test method for breaking force and elongation of textile fabrics (strip method). ASTM International, West Conshohocken

    Google Scholar 

  • Bera AK, Bandyopadhyay S, Sen SK, Ghosh S, Banerjee A (2002) Structural quality assessment of different cellulosic jute fibres by X-ray diffraction. Indian J Fibre Text Res 27(1):65–71

    CAS  Google Scholar 

  • Buta JC, Galetti GC (1989) FT-IR investigation of lignin components in various agricultural lingo cellulosic by-products. J Sci Food Agric 49:37–43

    Article  CAS  Google Scholar 

  • Cao X, Ding B, Yu J, Al-Deyab S (2013) In-situ growth of silver nanoparticles on TEMPO-oxidized jute fibres by microwave heating. Carbohydr Polym 92(1):571–576

    Article  CAS  Google Scholar 

  • Courrol LC, Oliveira Silva FR, de Gomes L (2007) A simple method to synthesize silver nanoparticles by photo-reduction. Colloids Surf A 305:54–57

    Article  CAS  Google Scholar 

  • Das NN, Das SC, Dutt AS, Mukherjee AK (1984) Origin of acidity in jute fibre. Text Res J 54(3):166–171

    Article  CAS  Google Scholar 

  • Del Rio JC, Rencoret J, Marques G, Li J, Gellerstedt G, Barbero JJ, Martinez AT, Gutierrez A (2009) Structural characterization of the lignin from jute (Corchorus capsularis) fibres. J Agric Food Chem 57:10271–10281

    Article  Google Scholar 

  • Dong H, Hinestroza J (2009) Metal nanoparticles on natural cellulose fibres: electrostatic assembly and in situ synthesis. ACS Appl Mater Interfaces 1(4):797–803

    Article  CAS  Google Scholar 

  • Drogat N, Granet RS, Sol V, Memmi A, Saad N, Koerkamp CK, Bressollier P, Krausz P (2011) Antimicrobial silver nanoparticles generated on cellulose nanocrystals. J Nanopart Res 13(4):1557–1562

    Article  CAS  Google Scholar 

  • Edwards HGM, Farwell DW, Webster D (1997) FT-Raman microscopy of untreated natural plant fibres. Spectrochim Act Part A 53:2383–2392

    Article  Google Scholar 

  • Elesini US, Čuden AP, Richards AF (2002) Study of the green cotton fibers. Acta Chim Slov 49:815–833

    CAS  Google Scholar 

  • El-Shishtawy RM, Asiri AM, Abdelwahed NAM, Al-Otaibi MM (2011) In-situ production of silver nanoparticle on cotton fabric and its antimicrobial evaluation. Cellulose 18(1):75–82

    Article  CAS  Google Scholar 

  • Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52(4):662–668

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • French AD, Santiago Cintron M (2013) Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20:583–588

    Article  CAS  Google Scholar 

  • Gashti MP, Alimohammadi F, Shamei A (2012) Preparation of water-repellent cellulose fibres using a polycarboxylic acid/hydrophobic silica nanocomposite coating. Surf Coat Technol 206(14):3208–3215

    Article  CAS  Google Scholar 

  • Hatakeyama T, Quinn FX (1999) Thermal analysis-fundamentals and applications to polymer science. Wiley, Chichester

    Google Scholar 

  • He J, Kunitake T, Nakao A (2003) Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibres. Chem Mater 15(23):4401–4406

    Article  CAS  Google Scholar 

  • Hu S, Hsieh YL (2015) Synthesis of surface bound silver nanoparticles on cellulose fibres using lignin as multi-functional agent. Carbohydr Polym 131:134–141

    Article  CAS  Google Scholar 

  • Ibrahim NA, Refaie R, Ahmed AF (2010) Novel approach for attaining cotton fabric with multi functional properties. J Ind Text 40(1):65–83

    Article  CAS  Google Scholar 

  • Jia B, Mei Y, Cheng L, Zhou J, Zhang L (2012) Preparation of copper nanoparticles coated cellulose films with antibacterial properties through one-step reduction. ACS Appl Mater Interfaces 4(6):2897–2902

    Article  CAS  Google Scholar 

  • Jiang T, Liu L, Yao J (2011) In-situ deposition of silver nanoparticles on the cotton fabrics. Fibres Polym 12(5):620–625

    Article  CAS  Google Scholar 

  • Johnston JH, Nilsson T (2012) Nanogold and nanosilver composites with lignin-containing cellulose fibres. J Mater Sci 47:1103–1112

    Article  CAS  Google Scholar 

  • Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Par YH (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74(7):2171–2178

    Article  CAS  Google Scholar 

  • Kaynak C, Gunduz HO, Isitman NA (2010) Use of nanoclay as an environmentally friendly flame retardant synergist in polyamide-6. J Nanosci Nanotechnol 10(11):7374–7377

    Article  CAS  Google Scholar 

  • Kelly FM, Johnston JM (2011) Coloured and functional silver nanoparticle–wool fibre composites. ACS Appl Mater Interfaces 3:1083–1092

    Article  CAS  Google Scholar 

  • Kuga S, Brown RM (1988) Silver labeling of the reducing ends of bacterial cellulose. Carbohydr Res 180(2):345–350

    Article  CAS  Google Scholar 

  • Lansdown AB (2002) Silver I: its antibacterial properties and mechanism of action. J Wound Care 11(4):125–130

    Article  CAS  Google Scholar 

  • Li R, He M, Li T, Zhang L (2015) Preparation and properties of cellulose/silver nanocomposite fibres. Carbohydr Polym 115:269–275

    Article  CAS  Google Scholar 

  • Liu Y, Hu H (2008) X-ray diffraction study of bamboo fibres treated with NaOH. Fibers Polym 9(6):735–739

    Article  CAS  Google Scholar 

  • Liz-Marzan L (2004) Nanometals: formation and colour. Mater Today 7:26–31

    Article  CAS  Google Scholar 

  • Lofton C, Sigmund W (2005) Mechanisms controlling crystal habits of gold and silver colloids. Adv Funct Mater 15(7):1197–1208

    Article  CAS  Google Scholar 

  • Luo C, Zhang Y, Zeng X, Zeng Y, Wang Y (2005) The role of poly(ethylene glycol) in the formation of silver nanoparticles. J Colloid Interface Sci 288:444–448

    Article  CAS  Google Scholar 

  • Luong ND, Lee Y, Nam JD (2008) Facile transformation of nanofibrillar polymer aerogel to carbon nanorods catalyzed by platinum nanoparticles. J Mater Chem 18:4254–4259

    Article  CAS  Google Scholar 

  • Meilert KT, Laub D, Kiwi J (2005) Photocatalytic self-cleaning of modified cotton textiles by TiO2 clusters attached by chemical spacers. J Mol Catal A Chem 237:101–108

    Article  CAS  Google Scholar 

  • Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S (2002) Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys 116(15):6755–6759

    Article  CAS  Google Scholar 

  • Montazer M, Alimohammadi F, Shamei A, Rahimi MK (2012) In-situ synthesis of nano silver on cotton using Tollens’ reagent. Carbohydr Polym 87(2):1706–1712

    Article  CAS  Google Scholar 

  • Mwaikambo LY, Ansell MP (2002) Chemical modification of hemp, sisal, jute, and kapok fibres by alkalization. J Appl Polym Sci 84(12):2222–2234

    Article  CAS  Google Scholar 

  • Narahari M, Valiyaveettil S (2012) In-situ preparation of silver nanoparticles on biocompatible methacrylated poly(vinyl alcohol) and cellulose based polymeric nano fibres. RSC Adv 2(30):11389–11396

    Article  Google Scholar 

  • Ouajai S, Shanks RA (2005) Composition, structure and thermal degradation of hemp cellulose after chemical treatments. Polym Degrad Stab 89(2):327–335

    Article  CAS  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720

    Article  CAS  Google Scholar 

  • Pandey SM, Day A, Mathew MD (1993) Thermal analysis of chemically treated jute fibres. Text Res J 63:143–150

    Article  CAS  Google Scholar 

  • Pinto RJB, Marques PAAP, Pascoal Neto C, Trindade T, Daina S, Sadocco P (2009) Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibres. Acta Biomater 5(6):2279–2289

    Article  CAS  Google Scholar 

  • Polakiewicz A, Dodiuk H, Kenig S (2014) Super-hydrophilic coatings based on silica nanoparticles. J Adhes Sci Technol 28(5):466–478

    Article  CAS  Google Scholar 

  • Pradhan N, Pal A, Pal T (2002) Silver nanoparticle catalyzed reduction of aromatic nitro compounds. Colloids Surf A 196:247–257

    Article  CAS  Google Scholar 

  • Rezic I, Steffan I (2007) ICP-OES determination of metals present in textile materials. Microchem J 85:46–51

    Article  CAS  Google Scholar 

  • Rivero PJ, Urrutia A, Goicoechea J, Rodríguez Y, Corres JM, Arregui FJ, Matías IR (2012) An antibacterial submicron fibre mat with in situ synthesized silver nanoparticles. J Appl Polym Sci 126(40):1228–1235

    Article  CAS  Google Scholar 

  • Sridhar MK, Basavarajjappa G, Kasturi SS, Balsubramanian N (1982) Thermal stability of jute fibres. Indian J Text Res 7:87–91

    Google Scholar 

  • Tserki V, Zafeiropoulos NE, Simon F, Panayiotou C (2005) A study of the effect of acetylation and propionylation surface treatments on natural fibres. Compos A 36:1110–1118

    Article  Google Scholar 

  • Ugur SS, Sariişik M, Aktaş AH (2011) Nano-TiO2 based multilayer film deposition on cotton fabrics for UV-protection. Fibers Polym 12:190–196

    Article  CAS  Google Scholar 

  • Urrutia A, Rivero PJ, Ruete L, Goicoechea J, Matías IR, Arregui FJ (2012) Single-stage in situ synthesis of silver nanoparticles in antibacterial self-assembled overlays. Colloid Polym Sci 290(9):785–792

    Article  CAS  Google Scholar 

  • Vigneshwaran N, Kumar S, Kathe AA, Varadarajan PV, Prasad V (2006) Functional finishing of cotton fabrics using zinc oxide–soluble starch nanocomposites. Nanotechnol 17:5087–5095

    Article  CAS  Google Scholar 

  • Wei Q (2009) Surface modification of textiles. Woodhead Publishing, Cambridge

    Book  Google Scholar 

  • Wu J, Zhao N, Zhang X, Xu J (2012) Cellulose/silver nanoparticles composite microspheres: eco-friendly synthesis and catalytic application. Cellulose 19(4):1239–1249

    Article  CAS  Google Scholar 

  • Xue CH, Chena J, Yina W, Jia ST, Maa JZ (2012) Super hydrophobic conductive textiles with antibacterial property by coating fibres with silver nanoparticles. Appl Surf Sci 258:2468–2472

    Article  CAS  Google Scholar 

  • Xueyan G, Shuzhen Z, Xiao-quan S (2008) Adsorption of metal ions on lignin. J Hazard Mater 151(1):134–142

    Article  Google Scholar 

  • Yang H, Yan R, Chen H, Lee DF, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788

    Article  CAS  Google Scholar 

  • Yu DG, Lin WC, Lin CH, Chang LM, Yang MC (2007) An in situ reduction method for preparing silver/poly(vinyl alcohol) nanocomposite as surface-enhanced Raman scattering (SERS)-active substrates. Mater Chem Phys 101(1):93–98

    Article  CAS  Google Scholar 

  • Yueping W, Ge W, Haitao C, Genlin T, Zheng L, Feng XQ, Xiangqi Z, Xiaojun H, Xushan G (2010) Structures of bamboo fibre for textiles. Text Res J 80:334–343

    Article  Google Scholar 

  • Zhang J, Liu K, Dai Z, Bao J, Mo X (2006) Formation of novel assembled silver nanostructures from polyglycol solution. Mater Chem Phys 100:313–318

    Article  CAS  Google Scholar 

  • Zhang D, Chen L, Fang D, Toh GW, Yue X, Chen Y, Lin H (2013) In-situ generation and deposition of nano-ZnO on cotton fabric by hyper branched polymer for its functional finishing. Text Res J 83(15):1625–1633

    Article  Google Scholar 

  • Zhong JF, Xu L, Qin XL (2015) Efficient antibacterial silver nanoparticles composite using lignin as a template. J Compos Mater 49:2329–2335

    Article  CAS  Google Scholar 

  • Zhu JF, Zhu YJ (2006) Microwave-assisted one-step synthesis of polyacrylamide–metal (M) Ag, Pt, Cu) nanocomposites in ethylene glycol. J Phys Chem B 110:8593–8597

    Article  CAS  Google Scholar 

  • Zhu C, Xue J, He J (2009) Controlled in situ synthesis of silver nanoparticles in natural cellulose fibres toward highly efficient antimicrobial materials. J Nanosci Nanotechnol 9(5):3067–3074

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding was provided by The National Fund for Basic, Strategic and Frontier Application Research in Agriculture (NFBSFARA) Indian Council of Agricultural Research, New Delhi, India through Grant no. FQ-3029.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ammayappan Lakshmanan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakshmanan, A., Chakraborty, S. Coating of silver nanoparticles on jute fibre by in situ synthesis. Cellulose 24, 1563–1577 (2017). https://doi.org/10.1007/s10570-017-1204-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1204-2

Keywords

Navigation