Skip to main content
Log in

Preparation of magnetic cotton fabric by surface micro-dissolution treatment

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Magnetic nanoparticles were synthesized and embedded into the surface of cotton fibers via surface micro-dissolution method using NaOH/urea aqueous solution as dissolving agent, magnetic nanoparticles as the filler, and H2SO4/Na2SO4 aqueous solution as the coagulant. The magnetic nanoparticles and cotton fabrics were systematically studied by means of scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, thermal gravity, vibrating sample magnetometry, Fourier transform infrared spectroscopy, and tensile testing. The results indicated that treated cotton fabrics contained about 12 wt% Fe3O4 and possessed durable magnetic response. Without using any adhesion agents, this surface micro-dissolution treatment provides a simple and green method to introduce nanoparticles into superficial layers of natural cotton fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/Urea and NaOH/Urea aqueous solutions. Macromol Biosci 5:539–548

    Article  CAS  Google Scholar 

  • Cai J, Zhang L (2006) Unique gelation behavior of cellulose in NaOH/urea aqueous solution. Biomacromolecules 7:183–189

    Article  CAS  Google Scholar 

  • Calvo S, Arias-Duque N, Giraldo O, Rosales-Rivera A (2012) Compositional, thermal and magnetic analysis of bamboo fibers covered with magnetite nanoparticles by in situ co-precipitation. Revista Mexicana de Física 58:134–137

    CAS  Google Scholar 

  • Chen X, Burger C, Wan F, Zhang J, Rong L, Hsiao BS, Chu B, Cai J, Zhang L (2007) Structure study of cellulose fibers wet-spun from environmentally friendly NaOH/urea aqueous solutions. Biomacromolecules 8:1918–1926

    Article  CAS  Google Scholar 

  • Chen J, Wang F, Huang K, Liu Y, Liu S (2009) Preparation of Fe3O4 nanoparticles with adjustable morphology. J Alloy Compd 475:898–902

    Article  CAS  Google Scholar 

  • Chia CH, Zakaria S, Ahamd S, Abdullah M, Jani SM (2006) Preparation of magnetic paper from kenaf: lumen loading and in situ synthesis method. Am J Appl Sci 3:1750–1754

    Article  CAS  Google Scholar 

  • Davidenko II (1996) High-density thermoremanent information recording in magnetic carrier and magneto-optical readout. J Inf Rec 23:315–323

    CAS  Google Scholar 

  • de Rooij M, Crienen S, Witjes JA, Barentsz JO, Rovers MM, Grutters JPC (2014) Cost-effectiveness of magnetic resonance (MR) imaging and MR-guided targeted biopsy versus systematic transrectal ultrasound-guided biopsy in diagnosing prostate cancer: a modelling study from a health care perspective. Eur Urol 66:430–436

    Article  Google Scholar 

  • Giri J, Guha Thakurta S, Bellare J, Kumar Nigam A, Bahadur D (2005) Preparation and characterization of phospholipid stabilized uniform sized magnetite nanoparticles. J Magn Magn Mater 293:62–68

    Article  CAS  Google Scholar 

  • Jiang Z, Fang Y, Xiang J, Ma Y, Lu A, Kang H, Huang Y, Guo H, Liu R, Zhang L (2014) Intermolecular interactions and 3D structure in cellulose-NaOH-urea aqueous system. J Phys Chem B 118:10250–10257

    Article  CAS  Google Scholar 

  • Katepetch C, Rujiravanit R (2011) Synthesis of magnetic nanoparticle into bacterial cellulose matrix by ammonia gas-enhancing in situ co-precipitation method. Carbohydr Polym 86:162–170

    Article  CAS  Google Scholar 

  • Katz E, Willner I (2006) A bis-quinone-functionalized Au-electrode subjected to hydrophobic magnetic nanoparticles acts as a three-state “Write-Read-Erase” information storage system. Electrochem Commun 8:879–882

    Article  CAS  Google Scholar 

  • Kraemer NA, Donker HCW, Otto J, Hodenius M, Senegas J, Slabu I, Klinge U, Baumann M, Muellen A, Obolenski B, Guenther RW, Krombach GA (2010) A concept for magnetic resonance visualization of surgical textile implants. Invest Radiol 45:477–483

    Article  Google Scholar 

  • Kraemer NA, Donker HCW, Kuehnert N, Otto J, Schrading S, Krombach GA, Klinge U, Kuhl CK (2013) In vivo visualization of polymer-based mesh implants using conventional magnetic resonance imaging and positive-contrast susceptibility imaging. Invest Radiol 48:200–205

    CAS  Google Scholar 

  • Kumar P, Negi YS, Singh SP (2011) Filler loading in the lumen or/and cell wall of fibers—a literature review. BioResources 6:1635–1646

    Google Scholar 

  • Li L, Leung CW, Pong PWT (2013a) Magnetism of iron oxide nanoparticles and magnetic biodetection. J Nanoelectron Optoelectron 8:397–414

    Article  CAS  Google Scholar 

  • Li Y, Zhu H, Gu H, Dai H, Fang Z, Weadock NJ, Guo Z, Hu L (2013b) Strong transparent magnetic nanopaper prepared by immobilization of Fe3O4 nanoparticles in a nanofibrillated cellulose network. J Mater Chem A 1:15278–15283

    Article  CAS  Google Scholar 

  • Li R, Wang S, Lu A, Zhang L (2015) Dissolution of cellulose from different sources in an NaOH/urea aqueous system at low temperature. Cellulose 22:339–349

    Article  CAS  Google Scholar 

  • Lin H, Watanabe Y, Kimura M, Hanabusa K, Shirai H (2003) Preparation of magnetic poly(vinyl alcohol) (PVA) materials by in situ synthesis of magnetite in a PVA matrix. J Appl Polym Sci 87:1239–1247

    Article  CAS  Google Scholar 

  • Lue A, Zhang L (2007) Advance in solvents of cellulose. Acta Polym Sin 10:937–944

    Google Scholar 

  • Munawar RF, Zakaria S, Radiman S, Hua C-C, Abdullah M, Yamauchi T (2010) Properties of magnetic paper prepared via in situ synthesis method. Sains Malays 39:593–598

    CAS  Google Scholar 

  • O’Handley RC (1999) Modern magnetic materials: principles and applications. Wiley, Hoboken

    Google Scholar 

  • Qi H, Chang C, Zhang L (2008) Effects of temperature and molecular weight on dissolution of cellulose in NaOH/urea aqueous solution. Cellulose 15:779–787

    Article  CAS  Google Scholar 

  • Saini P, Choudhary V, Vijayan N, Kotnala RK (2012) Improved electromagnetic interference shielding response of poly(aniline)-coated fabrics containing dielectric and magnetic nanoparticles. J Phys Chem C 116:13403–13412

    Article  CAS  Google Scholar 

  • Shi X, Zhang L, Cai J, Cheng G, Zhang H, Li J, Wang X (2011) A facile construction of supramolecular complex from polyaniline and cellulose in aqueous system. Macromolecules 44:4565–4568

    Article  CAS  Google Scholar 

  • Shyr T-W, Shie J-W (2012) Electromagnetic shielding mechanisms using soft magnetic stainless steel fiber enabled polyester textiles. J Magn Magn Mater 324:4127–4132

    Article  CAS  Google Scholar 

  • Small AC, Johnston JH (2009) Novel hybrid materials of magnetic nanoparticles and cellulose fibers. J Colloid Interface Sci 331:122–126

    Article  CAS  Google Scholar 

  • Tartaj P (2009) Superparamagnetic composites: magnetism with no memory. Eur J Inorg Chem 2009:333–343

    Article  Google Scholar 

  • Wang J, Zhang K, Peng Z, Chen Q (2004) Magnetic properties improvement in Fe3O4 nanoparticles grown under magnetic fields. J Cryst Growth 266:500–504

    Article  CAS  Google Scholar 

  • Xu F, Yang Y, Zhang G, Zhang F, Zhang Y (2015) A self-stiffness finishing for cotton fabric with N-methylmorpholine-N-oxide. Cellulose 22:2837–2844

    Article  CAS  Google Scholar 

  • Yan H, Zhang J, You C, Song Z, Yu B, Shen Y (2009) Influences of different synthesis conditions on properties of Fe3O4 nanoparticles. Mater Chem Phys 113:46–52

    Article  CAS  Google Scholar 

  • Zakaria S, Ong BH, Ahmad SH, Abdullah M, Yamauchi T (2005) Preparation of lumen-loaded kenaf pulp with magnetite (Fe3O4). Mater Chem Phys 89:216–220

    Article  CAS  Google Scholar 

  • Zhang L (2012) Novel materials with advanced properties constructed from cellulose solution dissolved at low temperature. In: Abstracts of Papers of the American Chemical Society, p 243

  • Zhang H, Zheng JY (2012) Immobilization of magnetic magnetite nanoparticle film on polyamide fabric. J Appl Polym Sci 125:3770–3777

    Article  CAS  Google Scholar 

  • Zhang B, Tu Z, Zhao F, Wang J (2013) Superparamagnetic iron oxide nanoparticles prepared by using an improved polyol method. Appl Surf Sci 266:375–379

    Article  CAS  Google Scholar 

  • Zhong W, Liu P, Shi HG, Xue DS (2010) Ferroferric oxide/polystyrene (Fe3O4/PS) superparamagnetic nanocomposite via facile in situ bulk radical polymerization. Express Polym Lett 4:183–187

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the Fundamental Research Funds for the Central Universities (XDJK2013B026), National Training Programs of Innovation and Entrepreneurship for Undergraduates (201510635046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiping Mao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, M., Li, L., Xie, R. et al. Preparation of magnetic cotton fabric by surface micro-dissolution treatment. Cellulose 24, 1099–1106 (2017). https://doi.org/10.1007/s10570-016-1152-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-1152-2

Keywords

Navigation