Skip to main content
Log in

Liquid crystalline phase in xanthan gum (XG)/H2O/H3PO3 and XG/H2O/H3PO4 tertiary systems: a thermal and rheological study

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

This study investigates the difference in phase transition and rheological behavior between xanthan gum (XG)/H2O/H3PO3 (XWP3) and XG/H2O/H3PO4 (XWP4) tertiary systems using polarized optical microscopy, Fourier transform infrared spectroscopy, light transmission detection, and rheometry. The results show that the LC (liquid crystal) phase formation in the XWP4 system was more strongly suppressed than that in the XWP3 system because the former exhibited stronger interactions between acid and XG molecules. With respect to the transition from LC to I (isotropic) phase at high temperature, the transition time of the XWP4 system was found to be much shorter than that of the XWP3 system. The transition time, also called the relaxation time, was measured by observing the annealing time and fitted using the VFT expression. The activation energies E for this transition in XWP4 and XWP3 systems are 3.0 and 4.7 kJ/mole, respectively, indicating that the XWP3 system exhibits stronger intermolecular attraction and is more sensitive to variation in temperature. In the rheological tests, as the temperature of the XWP4 system increased from 25 to 95 °C, the viscosity in the transitional region declined consistently, while in the XWP3 system, the decline proceeded through three stages owing to the shifting tautomers of the H3PO3. In the LC region, the viscosity normally fell as the shear rate or temperature increased but increased with the heating rate or XG concentration. Most interestingly, all of the results herein demonstrated that the viscosity of the XG solution in the LC region followed a power law with an index of roughly 0.08, which was found to be independent of the type of acid, concentration of acid, and XG concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Allain C, Lecourtier J, Chauveteau G (1998) Mesophase formation in high molecular-weight xanthan solutions. Rheol Acta 27(3):255–262. doi:10.1007/BF01329741

    Article  Google Scholar 

  • Becker A, Katzen F, Puhler A, Ielpi L (1998) Xanthan gum biosynthesis and application: a biochemical/genetic perspective. Appl Microbiol Biot 50(2):145–152. doi:10.1007/s002530051269

    Article  CAS  Google Scholar 

  • Boyd MJ, Hampson FC, Jolliffe IG, Dettmar PW, Mitchell JR, Melia CD (2009) Strand-like phase separation in mixtures of xanthan gum with anionic polyelectrolytes. Food Hydrocoll 23:2458–2467. doi:10.1016/j.foodhyd.2009.07.008

    Article  CAS  Google Scholar 

  • Chhabra RP, Richardson JF (1999) Non-newtonian flow in the process industries: fundamentals and engineering applications, 1st edn. Butterworth-Heinemann, Woburn

    Google Scholar 

  • Choppe E, Puaud F, Nicolai T, Benyahia L (2010) Rheology of xanthan solutions as a function of temperature, concentration and ionic strength. Carbohydr Polym 82(4):1228–1235. doi:10.1016/j.carbpol.2010.06.056

    Article  CAS  Google Scholar 

  • Collings PJ, Hird M (1997) Introduction to liquid crystals: chemistry and physics, 1st edn. Taylor & Francis, London

    Book  Google Scholar 

  • Desplanques S, Grisel M, Malhiac C, Renou F (2014) Stabilizing effect of acacia gum on the xanthan helical conformation in aqueous solution. Food Hydrocoll 35:181–188

    Article  CAS  Google Scholar 

  • Dyre JC (1998) Source of non-Arrhenius average relaxation time in glass-forming liquids. J Non-Cryst Solids 235–237:142–149

    Article  Google Scholar 

  • Gilmour R (2013) Phosphoric acid purification uses technology and economics, vol 1, 1 edn. CRC Press, New York

  • Guthrie JP (1979) Tautomerization equilibria for phosphorous acid and its ethyl esters, free energies of formation of phosphorous and phosphonic acids and their ethyl esters, and pKa values for ionization of the P-H bond in phosphonic acid and phosphonic esters. Can J Chem 57(2):236–239. doi:10.1139/v79-039

    Article  CAS  Google Scholar 

  • Hemar Y, Tamehana M, Munro PA, Singh H (2001) Viscosity, microstructure and phase behavior of aqueous mixtures of commercial milk protein products and xanthan gum. Food Hydrocoll 15(4–6):565–574. doi:10.1016/S0268-005X(01)00077-7

    Article  CAS  Google Scholar 

  • Higiro J, Herald TJ, Alavi S (2006) Rheological study of xanthan and locust bean gum interaction in dilute solution. Food Res Int 39(2):165–175

    Article  CAS  Google Scholar 

  • Huber AE, Stayton SP, Viney C, Kaplan DL (1994) Liquid crystallinity of a biological polysaccharide: the levan/water phase diagram. Macromolecules 27:953–957

    Article  CAS  Google Scholar 

  • Ikeda M, Aniya M (2013) Understanding the Vogel–Fulcher–Tammann law in terms of the bond strength–coordination number fluctuation model. J Non-Cryst Solids 371–372:53–57

    Article  Google Scholar 

  • Katzbauer B (1998) Properties and applications of xanthan gum. Polym Degrad Stabil 59(1–3):81–84. doi:10.1016/S0141-3910(97)00180-8

    Article  CAS  Google Scholar 

  • Lambert F, Rinaudo M (1985) On the thermal stability of xanthan gum. Polymer 26:1549–1553. doi:10.1016/0032-3861(85)90092-8

    Article  CAS  Google Scholar 

  • Lapasin R, Pricl S (1995) Rheology of industrial polysaccharides: theory and applications. Chapman & Hall, Glasgow

    Book  Google Scholar 

  • Lee HC, Brant DA (2002a) Rheology of concentrated isotropic and anisotropic xanthan solutions. 2. A semiflexible wormlike intermediate molecular weight sample. Macromolecules 35(6):2223–2234. doi:10.1021/ma011527e

    Article  CAS  Google Scholar 

  • Lee HC, Brant DA (2002b) Rheology of concentrated isotropic and anisotropic xanthan solutions: 3. Temperature dependence. Biomacromolecules 3(4):742–753. doi:10.1021/bm025510

    Article  CAS  Google Scholar 

  • Lühmann B, Finkelmann H (1987) Lyotropic liquid crystalline phase behavior of amphiphilic monomers and polymers having a rod-like hydrophobic moiety. Colloid Polym Sci 265(6):506–511. doi:10.1007/BF01412504

    Article  Google Scholar 

  • Maret G, Milas M, Rinaudo M (1981) Cholesteric order in aqueous solutions of the polysaccharide xanthan. Polym Bull 4(5):291–297. doi:10.1007/BF00255106

    Article  CAS  Google Scholar 

  • Morris ER, Foster TJ (1994) Role of conformation in synergistic interactions of xanthan. Carbohydr Polym 23(2):133–135. doi:10.1016/0144-8617(94)90038-8

    Article  CAS  Google Scholar 

  • Ochoa FG, Santos VE, Casas JA, Gómeza E (2000) Xanthan gum: production, recovery, and properties. Biotechnol Adv 18(7):549–579. doi:10.1016/S0734-9750(00)00050-1

    Article  Google Scholar 

  • Palaniraj A, Jayaraman V (2011) Production, recovery and applications of xanthan gum by xanthomonas campestris. J Food Eng 106:1–12. doi:10.1016/j.jfoodeng.2011.03.035

    Article  CAS  Google Scholar 

  • Popa N, Novac O, Profire L, Lupusoru CE, Popa MI (2010) Hydrogels based on chitosan–xanthan for controlled release of theophylline. J Mater Sci Mater Med 21:1241–1248. doi:10.1007/s10856-009-3937-4

    Article  CAS  Google Scholar 

  • Rault J (2000) Origin of the Vogel–Fulcher–Tammann law in glass-forming materials: the α-β bifurcation. J Non-Cryst Solids 271:177–217

    Article  CAS  Google Scholar 

  • Rinaudo M, Moroni A (2009) Rheological behavior of binary and ternary mixtures of polysaccharides in aqueous medium. Food Hydrocoll 23(7):1720–1728. doi:10.1016/j.foodhyd.2009.01.012

    Article  CAS  Google Scholar 

  • Rodriguez F (1996) Principles of polymer system, 4th edn. Taylor & Francis, Washington DC

    Google Scholar 

  • Rosalam S, England R (2006) Review of xanthan gum production from unmodified starches by xanthomonas comprestris sp. Enzyme Microb Tech 39:197–207. doi:10.1016/j.enzmictec.2005.10.019

    Article  CAS  Google Scholar 

  • Rottava I, Batesini G, Silva MF, Lerin L, Oliveira D, Padilha FF, Toniazzo G, Mossi A, Cansian RL, Luccio MD, Treiche H (2009) Xanthan gum production and rheological behavior using different strains of xanthomonas sp. Carbohydr Polym 77:65–71. doi:10.1016/j.carbpol.2008.12.001

    Article  CAS  Google Scholar 

  • Rwei SP, Nguyen TA (2014) Phase formation and transition in a xanthan gum/H2O/H3PO4 tertiary system. Cellulose. doi:10.1007/s1057001401937

    Google Scholar 

  • Ryder JF, Yeomans JM (2006) Shear thinning in dilute polymer solutions. J Chem Phys 125:1–12. doi:10.1063/1.2387948

    Article  Google Scholar 

  • Santore MM, Prud’homme RK (1990) Rheology of a xanthan broth at low stresses and strains. Carbohydr Polym 12(3):329–335. doi:10.1016/0144-8617(90)90074-3

    Article  CAS  Google Scholar 

  • Song KW, Kim YS, Chang GS (2006) Rheology of concentrated xanthan gum solutions: steady shear flow behavior. Fiber Polym 7(2):129–138. doi:10.1007/BF02908257

    Article  Google Scholar 

  • Sperling LH (2006) Introduction to physical polymer science, 4th edn. Wiley, New Jersey

    Google Scholar 

  • Spontak RJ, Bartolo RG, El-Nokaly M, Hiler GD (1992) Enhanced anisotropic ordering and pase seperation in lyotropic polysaccharide blends. Polymer 33(24):5343–5345

    Article  CAS  Google Scholar 

  • Stokke BT, Christensen BE (1996) Release of disordered xanthan oligomers upon partial acid hydrolysis of double-stranded xanthan. Food Hydrocoll 10(1). doi:10.1016/S0268-005X(96)80058-0

  • Stredansky M, Conti E (1999) Xanthan production by solid state fermentation. Process Biochem 34:581–587. doi:10.1016/S0032-9592(98)00131-9

    Article  CAS  Google Scholar 

  • Xuewu Z, Xin L, Dexiang G, Wei Z, Tong X, Yonghong M (1996) Rheological models for xanthan gum. J Food Eng 27(2):203–209. doi:10.1016/0260-8774(94)00092-1

    Article  Google Scholar 

  • Yoshida H, Hatakeyama T, Hatakeyama H (1990) Phase transitions of the water-xanthan system. Polymer 31(4):693–698. doi:10.1016/0032-3861(90)90291-6

    Article  CAS  Google Scholar 

  • Zhong L, Oostrom M, Truex MJ, Vermeul VR, Szecsody JE (2013) Rheological behavior of xanthan gum solution related to shear thinning fluid delivery for subsurface remediation. J Hazard Mater 244–245:160–170. doi:10.1016/j.jhazmat.2012.11.028

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Science Council of the Republic of China, Taiwan, for financially supporting this research under Contract No. NSC 102-2218-E-027-015. Ted Knoy is appreciated for his editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syang-Peng Rwei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rwei, SP., Nguyen, TA. Liquid crystalline phase in xanthan gum (XG)/H2O/H3PO3 and XG/H2O/H3PO4 tertiary systems: a thermal and rheological study. Cellulose 21, 3231–3241 (2014). https://doi.org/10.1007/s10570-014-0358-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0358-4

Keywords

Navigation