Skip to main content
Log in

In situ production of nanocomposites of poly(vinyl alcohol) and cellulose nanofibrils from Gluconacetobacter bacteria: effect of chemical crosslinking

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Nanocomposites of poly(vinyl alcohol) (PVA) reinforced with bacterial cellulose (BC) were bioproduced by Gluconacetobacter genus bacteria. BC was grown from a culture medium modified with water-soluble PVA to allow in situ assembly and production of a novel nanocomposite that displayed synergistic property contributions from the individual components. Chemical crosslinking with glyoxal was performed to avoid the loss of PVA matrix during purification steps and to improve the functional properties of composite films. Reinforcement with BC at 0.6, 6 and 14 wt% content yielded nanocomposites with excellent mechanical, thermal and dimensional properties as well as moisture stability. Young’s modulus and strength at break increased markedly with the reinforcing BC: relative to the control sample (in absence of BC), increases of 15, 165 and 680 % were determined for nanocomposites with 0.6, 6 and 14 % BC loading, respectively. The corresponding increase in tensile strengths at yield were 1, 12 and 40 %, respectively. The results indicate an exceptional reinforcing effect by the three-dimensional network structure formed by the BC upon biosynthesis embedded in the PVA matrix and also suggest a large percolation within the matrix. Bonding (mainly hydrogen bonding) and chemical crosslinking between the reinforcing phase and matrix were the main contributions to the properties of the nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Barud HS, Ribeiro CA, Crespi MS, Martines MAU, Dexpert-Ghys J, Marques RFC, Messaddeq Y, Ribeiro SJL (2007) Thermal characterization of bacterial cellulose-phosphate composite membranes. J Therm Anal Calorim 87:815–818

    Article  CAS  Google Scholar 

  • Berglund L (2005) Cellulose based nanocomposites. In: Mohanty A, Misra M, Drzal L (eds) Natural fibers, biopolymers, and biocomposites. CRC Press, Boca Raton, pp 807–832

    Google Scholar 

  • Bielecki S, Krystynowicz A, Turkiewicz M, Kalinowska H (2005) Bacterial cellulose. In: Steinbüchel A, Doi Y (eds) Biotechnology of polymer: from synthesis to patents. Wiley, Weinheim, pp 381–434

    Google Scholar 

  • Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13:171–180

    Article  CAS  Google Scholar 

  • Brown E, Laborie M-P (2007) Bioengineering bacterial cellulose/poly(ethylene oxide) nano composites. Biomacromolecules 8:3074–3081

    Article  CAS  Google Scholar 

  • Brown JR, Willison J, Richardson C (1976) Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process. Proc Natl Acad Sci USA 73:4565–4569

    Article  CAS  Google Scholar 

  • Brown EE, Zhang J, Laborie M-P (2011) Never-dried bacterial cellulose/fibrin composites: preparation, morphology and mechanical properties. Cellulose 18:631–641

    Article  CAS  Google Scholar 

  • Castro C, Zuluaga R, Álvarez AL, Putaux J-L, Caro G, Rojas O, Mondragon I, Gañán P (2012) Bacterial cellulose produced by a new acid-resistant strain of Gluconacetobacter genus. Carbohydr Polym 89:1033–1037

    Article  CAS  Google Scholar 

  • Castro C, Cleenwerck I, Trcek J, Zuluaga R, De Vos P, Caro G, Aguirre R, Putaux J-L, Gañán P (2013) Gluconacetobacter medellinensis sp. nov., cellulose- and non-cellulose-producing acetic acid bacteria isolated from vinegar. Int J Syst Evol Microbiol 63:1119–1125

    Article  CAS  Google Scholar 

  • Cheng Q, Wang S, Rials T (2009) Poly(vinyl alcohol) nanocomposites reinforced with cellulose fibrils isolated by high intensity ultrasonication. Compos Part A Appl S 40:218–224

    Article  Google Scholar 

  • Choi H-M, Kim JH, Shin S (1999) Characterization of cotton fabrics treated with glyoxal and glutaraldehyde. J Appl Polym Sci 73:2691–2699

    Article  CAS  Google Scholar 

  • Choi Y, Ahn Y, Kang M, Jun H, Kim IS, Moon S (2004) Preparation and characterization of acrylic acid-treated bacterial cellulose cation-exchange membrane. J Chem Technol Biotechnol 79:79–84

    Article  CAS  Google Scholar 

  • De la Rosa A, Heux L, Cavaille JY (2001) Secondary relaxations in poly(allyl alcohol), PAA, and poly(vinyl alcohol), PVA. II. Dielectric relaxations compared with dielectric behaviour of amorphous dried and hydrated cellulose and dextran. Polymer 42:5371–5379

    Google Scholar 

  • Gea S, Bilotti E, Reynolds C, Soykeabkeaw N, Peijs T (2010) Bacterial cellulose-poly(vinyl alcohol) nanocomposites prepared by an in situ process. Mater Lett 64:901–904

    Article  CAS  Google Scholar 

  • Grande C, Torres F, Gomez C, Troncoso O, Canet-Ferrer J, Martinez-Pastor J (2008) Morphological characterisation of bacterial cellulose-starch nano composites. Polym Polym Compos 16:181–185

    CAS  Google Scholar 

  • Habibi Y, Lucia L, Rojas O (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  CAS  Google Scholar 

  • Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose-a masterpiece of nature’s arts. J Mater Sci 35:261–270

    Article  CAS  Google Scholar 

  • Iwamoto S, Nakagaito A, Yano H, Nogi M (2005) Optically transparent composites reinforced with plant fiber-based nanofibers. Appl Phys A Mater Sci Process 81:1109–1112

    Article  CAS  Google Scholar 

  • Iwamoto S, Nakagaito A, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nano composites. Appl Phys A Mater Sci Process 89:461–466

    Article  CAS  Google Scholar 

  • Janardhnan S, Sain M (2006) Isolation of cellulose microfibrils: an enzymatic approach. BioResources 1:176–188

    Google Scholar 

  • Kenney JF, Willcockson GW (1966) Structure-property relationships of poly(vinyl alcohol). III. Relationships between stereo-regularity, crystallinity, and water resistance in poly(vinyl alcohol). J Polym Sci Pol Chem 4:679–698

    Article  CAS  Google Scholar 

  • Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603

    Article  CAS  Google Scholar 

  • Kortaberria G, Arruti P, Mondragon I, Vescovo L, Sangermano M (2011) Dynamics of in situ synthetized silver–epoxy nanocomposites as studied by dielectric relaxation spectroscopy. J Appl Polym Sci 120:2361–2367

    Article  CAS  Google Scholar 

  • Laborie M-P (2009) Bacterial cellulose and its polymeric nanocomposites. In: Lucia L, Rojas OR (eds) The nanoscience and technology of renewable biomaterials. Wiley, Chichester, pp 231–271

    Chapter  Google Scholar 

  • Lee S-Y, Mohan DM, Kang I-A, Doh G-H, Lee S, Han SO (2009) Nanocellulose reinforced PVA composite films: effects of acid treatment and filler loading. Fiber Polym 10:77–82

    Article  CAS  Google Scholar 

  • Lin SB, Hsu CP, Chen LC, Chen HH (2009) Adding enzymatically modified gelatin to enhance the rehydration abilities and mechanical properties of bacterial cellulose. Food Hydrocoll 23:2195–2203

    Article  CAS  Google Scholar 

  • Lu J, Wang T, Drzal LT (2008) Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials. Compos Part A Appl 39:738–746

    Article  Google Scholar 

  • Nakagaito A, Iwamoto S, Yano H (2005) Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites. Appl Phys A Mater Sci Process 80:93–97

    Article  CAS  Google Scholar 

  • Ngui MO, Mallapragada SK (1998) Understanding isothermal semicrystalline polymer drying: mathematical models and experimental characterization. J Polym Sci Part B Polym Phys 36:2771–2780

    Article  CAS  Google Scholar 

  • Peppas NA, Hansen PJ (1982) Crystallization kinetics of poly(vinyl alcohol). J Appl Polym Sci 27:4787–4797

    Article  CAS  Google Scholar 

  • Peresin MS, Habibi Y, Vesterinen AH, Rojas OJ, Pawlak JJ, Seppala JV (2010) Effect of moisture on electrospun nanofiber composites of poly(vinyl alcohol) and cellulose nanocrystals. Biomacromolecules 11:2471–2477

    Article  CAS  Google Scholar 

  • Phisalaphong M, Jatupaiboon N (2008) Biosynthesis and characterization of bacteria cellulose–chitosan film. Carbohydr Polym 74:482–488

    Article  CAS  Google Scholar 

  • Qiu K, Netravali A (2012) Bacterial cellulose-based membrane-like biodegradable composites using cross-linked and noncross-linked polyvinyl alcohol. J Mater Sci 47:6066–6075

    Article  CAS  Google Scholar 

  • Quero F, Nogi M, Lee K-Y, Yano H, Abdulsalami K, Holmes SM, Sakakini BH, Eichhorn SJ (2010) Optimization of the mechanical performance of bacterial cellulose/poly(l-lactic) acid composites. ACS Appl Mater Inter 2(1):321–330

    Article  CAS  Google Scholar 

  • Quero F, Nogi M, Lee K-Y, Vanden Poel G, Bismarck A, Mantalaris A, Yano H, Eichhorn SJ (2011) Cross-linked bacterial cellulose networks using glyoxalization. ACS Appl Mater Interfaces 3:490–499

    Article  CAS  Google Scholar 

  • Roohani M, Habibi Y, Belgasem NM, Ebrahim G, Karimi AN, Dufresne A (2008) Cellulose whiskers reinforced polyvinyl alcohol copolymers nano composites. Eur Polym J 44:2489–2498

    Article  CAS  Google Scholar 

  • Saibuatong O, Phisalaphong M (2010) Novo Aloe vera-bacterial cellulose composite film from biosynthesis. Carbohydr Polym 79:455–460

    Article  CAS  Google Scholar 

  • Samir S, Alloin F, Paillet M, Dufresne A (2004) Tangling effect in fibrillated cellulose reinforced nano composites. Macromolecules 37:4313–4316

    Article  CAS  Google Scholar 

  • Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626

    Article  CAS  Google Scholar 

  • Tokoh C, Takabe K, Sugiyama J, Fujita M (2002) Cellulose synthesized by Acetobacter xylinum in the presence of plant cell wall polysaccharides. Cellulose 9:65–74

    Article  CAS  Google Scholar 

  • Uhlin IK, Atalla RH, Thompson NS (1995) Influence of hemicelluloses on the aggregation patterns of bacterial cellulose. Cellulose 2:129–144

    Article  CAS  Google Scholar 

  • Wan YZ, Hong L, Jia SR, Huang Y, Zhu Y, Wang YL, Jiang HJ (2006) Synthesis and characterization of hydroxyapatite-bacterial cellulose nanocomposites. Compos Sci Technol 66:1825–1832

    Article  CAS  Google Scholar 

  • Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153–155

    Article  CAS  Google Scholar 

  • Yasuda K, Gong JP, Katsuyama Y, Nakayama A, Takanabe Y, Kondo E, Ueno M, Osada Y (2005) Biomechanical properties of high-toughness double network hydrogels. Biomaterials 26:4468–4475

    Article  CAS  Google Scholar 

  • Zhang W, Yang X, Li C, Liang M, Lu C, Deng Y (2011) Mechanochemical activation of cellulose and its thermoplastic polyvinyl alcohol ecocomposites with enhanced physicochemical properties. Carbohydr Polym 83:257–263

    Article  CAS  Google Scholar 

  • Zimmermann T, Pöhler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6:754–761

    Article  Google Scholar 

  • Zoppe JO, Peresin MS, Habibi Y, Venditti RA, Rojas OJ (2009) Reinforcing poly(ε-caprolactone) nanofibers with cellulose nanocrystals. ACS Appl. Mater. Inter. 1:1996–2004

    Article  CAS  Google Scholar 

  • Zuluaga R, Putaux J-L, Cruz J, Vélez J, Mondragon I, Gañan P (2009) Cellulose microfibrils from banana rachis: effect of alkaline treatments on structural and morphological features. Carbohydr Polym 76:51–59

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Colombia’s COLCIENCIAS and SENA for financial support as well as Prof. Janne Laine of the Department of Forest Products Technology of Aalto University (Finland).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Zuluaga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castro, C., Vesterinen, A., Zuluaga, R. et al. In situ production of nanocomposites of poly(vinyl alcohol) and cellulose nanofibrils from Gluconacetobacter bacteria: effect of chemical crosslinking. Cellulose 21, 1745–1756 (2014). https://doi.org/10.1007/s10570-014-0170-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0170-1

Keywords

Navigation