Skip to main content
Log in

Morphology of cellulose objects regenerated from cellulose–N-methylmorpholine N-oxide–water solutions

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The precipitation in aqueous media of cellulose from solutions in N-methylmorpholine N-oxide (NMMO) hydrates is an important stage in the process of manufacturing of fibres, films and other cellulose objects. It is responsible for the formation of the structure of the regenerated object and their morphological characteristics significantly influence the properties of the final products. Regeneration of rather large cellulose objects was observed in situ by optical microscopy. It was found that all regenerated objects present an asymmetric structure composed of a dense skin surrounding a sub-layer characterised by the presence of finger-like voids. The porous texture of the cellulose parts between these voids is typical of the one obtained by spinodal decomposition. The morphologies of regenerated cellulose samples are described as a function of various parameters, initial cellulose solutions and composition and temperature of the aqueous regeneration bath. A mechanism of the structure formation during regeneration is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abu-Rous M, Ingolic E, Schuster KC (2006) Visualisation of the fibrillar and pore morphology of cellulosic fibres applying transmission electron microscopy. Cellulose 13:411–419. doi:10.1007/s10570-006-9052-5

    Article  CAS  Google Scholar 

  • Abu-Rous M, Varga K, Bechtold T, Schuster KC (2007) A new method to visualize and characterize the pore structure of Tencel (Lyocell) and other man-made cellulosic fibres using a fluorescent dye molecular probe. J Appl Polym Sci 106:2083–2091. doi:10.1002/app.26722

    Article  CAS  Google Scholar 

  • Bang YH, Lee S, Park JB, Cho HH (1999) Effect of coagulation conditions on fine structure of regenerated cellulosic films made from cellulose/N-methylmorpholine-N-oxide/H2O systems. J Appl Polym Sci 73:2681–2690. doi :10.1002/(SICI)1097-4628(19990923)73:13<2681::AID-APP16>3.0.CO;2-Z

    Article  CAS  Google Scholar 

  • Barton BF, Reeve JL, McHugh AJ (1997) Observations on the dynamics of nonsolvent-induced phase inversion. J Polym Sci Part B Polym Phys 35:569–585. doi :10.1002/(SICI)1099-0488(199703)35:4<569::AID-POLB5>3.0.CO;2-L

    Article  CAS  Google Scholar 

  • Biganska O, Navard P (2005) Kinetics of precipitation of cellulose from cellulose-NMMO-water solutions. Biomacromolecules 6:1949–1953. doi:10.1021/bm040079q

    Article  CAS  Google Scholar 

  • Biganska O, Navard P, Bedue O (2002) Crystallisation of cellulose/N-methylmorpholine N-oxide hydrates solutions. Polymer (Guildf) 43:6139–6145. doi:10.1016/S0032-3861(02)00552-9

    Article  CAS  Google Scholar 

  • Broens L, Altena FW, Smolders CA, Koenhen DM (1980) Asymmetric membrane structures as a result of phase separation phenomena. Desalination 32:33–45. doi:10.1016/S0011-9164(00)86004-X

    Article  Google Scholar 

  • Chanzy H, Dubé M, Marchessault RH (1979) Crystallization of cellulose with N-methylmorpholine N-oxide: a new method of texturing cellulose. J Polym Sci Polym Lett Ed 17:219–226. doi:10.1002/pol.1979.130170408

    Article  CAS  Google Scholar 

  • Crawshaw J, Cameron RE (2000) A small angle X-ray scattering study of pore structure in Tencel® cellulose fibres and the effects of physical treatments. Polymer 41:4698

    Google Scholar 

  • Ducos F, Biganska O, Schuster KC, Navard P (2006) Influence of the Lyocell fibre structure on their fibrillation. Cell Chem Technol 40(5):299–311

    CAS  Google Scholar 

  • Fink H-P, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524. doi:10.1016/S0079-6700(01)00025-9

    Article  CAS  Google Scholar 

  • Jianchin Z, Meiwu S, Zhu H, Kan L (1999) Study of the skin-core structure of Lyocell staple fibers. Chem Fibers Int 49:496–500

    Google Scholar 

  • Kessler DA, Koplik J, Levine H (1988) Pattern selection in fingered growth phenomena. Adv Phys 37:255–339. doi:10.1080/00018738800101379

    Article  Google Scholar 

  • Koenhen DM, Mulder MHV, Smolders CA (1977) Phase separation phenomena during the formation of asymmetric membranes. J Appl Polym Sci 21:199–215. doi:10.1002/app.1977.070210118

    Article  CAS  Google Scholar 

  • Krüger R (1994) Cellulosic filament yarn from the NMMO process. Lenzinger Ber 9:49–52

    Google Scholar 

  • Laity PR, Glover PM, Hay JN (2002) Composition and phase changes observed by magnetic resonance imaging during non-solvent induced coagulation of cellulose. Polymer (Guildf) 43:5827–5837. doi:10.1016/S0032-3861(02)00531-1

    Article  CAS  Google Scholar 

  • Mortimer SA, Péguy A (1996) Methods for reducing the tendency of Lyocell fibers to fibrillate. J Appl Polym Sci 60:305–316. doi :10.1002/(SICI)1097-4628(19960418)60:3<305::AID-APP3>3.0.CO;2-P

    Article  CAS  Google Scholar 

  • Navard P, Haudin JM (1981) Etude thermique de la N-méthylmorpholine N-oxyde et de sa complexation avec l’eau. J Therm Anal 22:107–118. doi:10.1007/BF01915701

    Article  CAS  Google Scholar 

  • Pereira Nunes S, Inoue T (1996) Evidence for spinodal decomposition and nucleation and growth mechanisms during membrane formation. J Membr Sci 111:93–103. doi:10.1016/0376-7388(95)00281-2

    Article  Google Scholar 

  • Radovanovic P, Thiel SW, Hwang S-T (1992) Formation of asymmetric polysulfone membranes by immersion precipitation. Part II. The effects of casting solution and gelation bath compositions on membrane structure and skin formation. J Membr Sci 65:231–246. doi:10.1016/0376-7388(92)87025-S

    Article  CAS  Google Scholar 

  • Romanov VV, Sokira AN, Lunina OB, Iovleva MM (1988) Morphological features of the structure of fibres prepared from solutions of cellulose in methylmorpholine oxide. Fibre Chem 20:38–39. Khimicheskie Volokna 1:27–28

    Google Scholar 

  • Saffman PG, Taylor GI (1958) The penetration of fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc R Soc Lond A Math Phys Sci 245:312–329. doi:10.1098/rspa.1958.0085

    Article  CAS  Google Scholar 

  • Schurz J, Lenz J, Wrentschur E (1995) Inner surface and void system of regenerated cellulose fibers. Angew Makromol Chem 229:175–184. doi:10.1002/apmc.1995.052290112

    Article  CAS  Google Scholar 

  • Shen TC, Cabasso I (1982) Ethyl cellulose anisotropic membranes. In: Seymour RB, Stahl GA (eds) Macromolecular solutions: solvent-property relationships in polymers. Pergamon Press, New York, p 108

    Google Scholar 

  • Tsay CS, McHugh AJ (1992) A rationale for structure formation during phase inversion. J Polym Sci Part B Polym Phys 30:309–313. doi:10.1002/polb.1992.090300312

    Article  CAS  Google Scholar 

  • Zhang Y, Shao H, Wu C, Hu X (2001) Formation and characterization of cellulose membranes from N-methylmorpholine-N-oxide solution. Macromol Biosci 1:141–148. doi :10.1002/1616-5195(20010601)1:4<141::AID-MABI141>3.0.CO;2-J

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Navard.

Additional information

P. Navard is a Member of the European Polysaccharide Network of Excellence (EPNOE), www.epnoe.eu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biganska, O., Navard, P. Morphology of cellulose objects regenerated from cellulose–N-methylmorpholine N-oxide–water solutions. Cellulose 16, 179–188 (2009). https://doi.org/10.1007/s10570-008-9256-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-008-9256-y

Keywords

Navigation