Skip to main content
Log in

Cartography of the b-plane of a close encounter I: semimajor axes of post-encounter orbits

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

Close planetary encounters play an important role in the evolution of the orbits of small Solar system bodies and are usually studied with the help of numerical integrations. Here we study close encounters in the framework of an analytic theory, focusing on the so-called b-plane, which is the plane centred on the planet and perpendicular to the planetocentric velocity at infinity of the small body. As shown in previous papers, it is possible to identify the initial conditions on the b-plane that lead to post-encounter orbits of given semimajor axis. In this paper we exploit analytical relationships between b-plane coordinates and pre-encounter orbital elements and compute the probability of transition to these post-encounter states, and numerically check the validity of the analytic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Carusi, A., Pozzi, F.: Planetary close encounters between Jupiter and about 3000 fictitious minor bodies. Moon Planets 19, 71 (1978)

    Article  ADS  Google Scholar 

  • Carusi, A., Kresáková, M., Valsecchi, G.B.: Perturbations by Jupiter of the particles ejected from Comet Lexell. Astron. Astrophys. 116, 201 (1982)

    ADS  Google Scholar 

  • Carusi, A., Valsecchi, G.B., Greenberg, R.: Planetary close encounters: geometry of approach and post-encounter orbital parameters. Celest. Mech. Dyn. Astron. 49, 111 (1990)

    Article  ADS  MATH  Google Scholar 

  • Chesley, S.R.: Potential impact detection for Near-Earth asteroids: the case of 99942 Apophis (2004 \(\text{ MN }_4\)). In: Lazzaro, D., Ferraz-Mello, S., Fernández, J.A. (eds.) Proceedings of IAU Symposium, vol. 229, p. 215. Cambridge University Press, Cambridge, UK (2006)

    Google Scholar 

  • Everhart, E.: Close encounters of comets and planets. Astron. J. 74, 735 (1969)

    Article  ADS  Google Scholar 

  • Everhart, E.: An efficient integrator that uses Gauss–Radau spacings. In: Carusi, A., Valsecchi, G.B. (eds.) Dynamics of Comets: Their Origin and Evolution, p. 185. Reidel, Dordrecht (1985)

    Chapter  Google Scholar 

  • Froeschlé, Cl, Rickman, H.: A Monte Carlo investigation of Jovian perturbations on short-period comet orbits. Icarus 46, 400 (1981)

    Article  ADS  Google Scholar 

  • Kizner, W.: A method of describing miss distances for lunar and interplanetary trajectories. Planet. Space Sci. 7, 125 (1961)

    Article  ADS  Google Scholar 

  • Letizia, F., Colombo, C., Van den Eynde, J., Armellin, R., Jehn, R.: SNAPPSHOT: suite for the numerical analysis of planetary protection. In: Proceedings of the 6th International Conference on Astrodynamics Tools and Techniques (ICATT), 14–17 Mar 2016, Darmstadt (2016)

  • Milani, A., Chesley, S.R., Sansaturio, M.E., Tommei, G., Valsecchi, G.B.: Nonlinear impact monitoring: line of variation searches for impactors. Icarus 173, 362 (2005)

    Article  ADS  Google Scholar 

  • Oikawa, S., Everhart, E.: Past and future orbit of 1977 UB, object Chiron. Astron. J. 84, 134 (1979)

    Article  ADS  Google Scholar 

  • Öpik, E.J.: Interplanetary Encounters. Elsevier, Amsterdam (1976)

    Google Scholar 

  • Scholl, H.: History and evolution of Chiron’s orbit. Icarus 40, 345 (1979)

    Article  ADS  Google Scholar 

  • Tisserand, M.F.: Sur la théorie de la capture des comètes périodiques. Bull. Astron. 6, 289 (1889)

    MATH  Google Scholar 

  • Valsecchi, G.B.: Geometric conditions for quasi-collisions in Öpik’s theory. Lect. Notes Phys. 682, 145 (2006)

    Article  ADS  Google Scholar 

  • Valsecchi, G.B., Milani, A., Gronchi, G.F., Chesley, S.R.: The distribution of energy perturbations at planetary close encounters. Celest. Mech. Dyn. Astron. 78, 83 (2000)

    Article  ADS  MATH  Google Scholar 

  • Valsecchi, G.B., Milani, A., Gronchi, G.F., Chesley, S.R.: Resonant returns to close approaches: analytical theory. Astron. Astrophys. 408, 1179 (2003)

    Article  ADS  Google Scholar 

  • Valsecchi, G.B., Rossi, A., Milani, A., Chesley, S.R.: The size of collision solutions in orbital elements space. In: Knežević, Z., Milani, A. (eds.) Dynamics of Populations of Planetary Systems, p. 249. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  • Valsecchi, G.B., Alessi, E.M., Rossi, A.: An analytical solution for the swing-by problem. Celest. Mech. Dyn. Astron. 123, 151 (2015a)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Valsecchi, G.B., Alessi, E.M., Rossi, A.: Erratum to: Celest Mech Dyn Astr (2015) 123(2) https://doi.org/10.1007/s10569-015-9631-6. Celest. Mech. Dynam. Astron. 123, 167 (2015b)

Download references

Acknowledgements

We are grateful to D. Farnocchia for his very useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Valsecchi.

Additional information

This article is part of the topical collection on Close Approaches and Collisions in Planetary Systems.

Guest Editors: Rudolf Dvorak, Christoph Lhotka and Alessandra Celletti.

Appendix: From coordinates and velocity components at closest approach to b-plane coordinates

Appendix: From coordinates and velocity components at closest approach to b-plane coordinates

We give here explicit formulae to derive \(U, \theta , \phi , \xi , \zeta \) from the planetocentric coordinates and velocity components at closest approach obtained by a numerical integration of the restricted, circular, 3-dimensional 3-body problem.

Let \(X_q, Y_q, Z_q, V_x, V_y, V_z\) be the coordinates and velocity components of the small body at the time of closest approach to the planet, in the reference frame of Sect. 2. Then:

$$\begin{aligned} d= & {} \sqrt{X_q^2+Y_q^2+Z_q^2} \\ V= & {} \sqrt{V_X^2+V_Y^2+V_Z^2} \\ c= & {} \frac{md}{V^2d-2m} \\ b= & {} \sqrt{d^2+2cd} \\ U= & {} \frac{Vd}{b} \\ \cos \theta= & {} \frac{VY_qc+V_Ybd}{Vd(c+d)} \\ \sin \theta= & {} \sqrt{1-\cos ^2\theta } \\ \cos \phi= & {} \frac{V_Zbd+VZ_qc}{Vd(c+d)\sin \theta } \\ \sin \phi= & {} \frac{V_Xbd+VX_qc}{Vd(c+d)\sin \theta } \\ \xi= & {} \frac{b(V_ZX_q-V_XZ_q)}{Vd\sin \theta } \\ \zeta= & {} \frac{b(V_Ycd-VY_qb)}{Vd(c+d)\sin \theta }. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valsecchi, G.B., Alessi, E.M. & Rossi, A. Cartography of the b-plane of a close encounter I: semimajor axes of post-encounter orbits. Celest Mech Dyn Astr 130, 8 (2018). https://doi.org/10.1007/s10569-017-9810-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10569-017-9810-8

Keywords

Navigation