Skip to main content
Log in

Evaluation of endogenous acidic metabolic products associated with carbohydrate metabolism in tumor cells

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Tumor cells have a high tolerance for acidic and hypoxic microenvironments, also producing abundant lactic acid through accelerated glycolysis in the presence or absence of O2. While the accumulation of lactate is thought to be a major contributor to the reduction of pH-circumscribing aggressive tumors, it is not known if other endogenous metabolic products contribute this acidity. Furthermore, anaerobic metabolism in cancer cells bears similarity to homo-fermentative lactic acid bacteria, however very little is known about an alternative pathway that may drive adenosine triphosphate (ATP) production independent of glycolysis. In this study, we quantify over 40 end-products (amines, acids, alcohols, aldehydes, or ketones) produced by malignant neuroblastoma under accelerated glycolysis (+glucose (GLU) supply 1–10 mM) ± mitochondrial toxin; 1-methyl-4-phenylpyridinium (MPP+) to abate aerobic respiration to delineate differences between anaerobic vs. aerobic cell required metabolic pathways. The data show that an acceleration of anaerobic glycolysis prompts an expected reduction in extracellular pH (pHex) from neutral to 6.7 ± 0.006. Diverse metabolic acids associated with this drop in acidity were quantified by ionic exchange liquid chromatography (LC), showing concomitant rise in lactate (Ctrls 7.5 ± 0.5 mM; +GLU 12.35 ± 1.3 mM; +GLU + MPP 18.1 ± 1.8 mM), acetate (Ctrl 0.84 ± 0.13 mM: +GLU 1.3 ± 0.15 mM; +GLU + MPP 2.7 ± 0.4 mM), fumarate, and a-ketoglutarate (<10 µM) while a range of other metabolic organic acids remained undetected. Amino acids quantified by o-phthalaldehyde precolumn derivatization/electrochemical detection–LC show accumulation of l-alanine (1.6 ± .052 mM), l-glutamate (285 ± 9.7 µM), l-asparagine (202 ± 2.1 µM), and l-aspartate (84.2 ± 4.9 µM) produced during routine metabolism, while other amino acids remain undetected. In contrast, the data show no evidence for accumulation of acetaldehyde, aldehydes, or ketones (Purpald/2,4-dinitrophenylhydrazine—Brady's reagent), acetoin (Voges–Proskauer test), or alcohols (NAD+-linked alcohol dehydrogenase). In conclusion, these results provide preliminary evidence to suggest the existence of an active pyruvate–alanine transaminase or phosphotransacetylase/acetyl-CoA synthetase pathway to be involved with anaerobic energy metabolism of cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agren D, Stehr M, Berthold CL, Kapoor S, Oehlmann W, Singh M, et al. Three-dimensional structures of apo- and holo-l-alanine dehydrogenase from Mycobacterium tuberculosis reveal conformational changes upon coenzyme binding. J Mol Biol. 2008;377:1161–73.

    Article  PubMed  CAS  Google Scholar 

  • Airley RE, Mobasheri A. Hypoxic regulation of glucose transport, anaerobic metabolism and angiogenesis in cancer: novel pathways and targets for anticancer therapeutics. Chemotherapy. 2007;53:233–56.

    Article  CAS  PubMed  Google Scholar 

  • Armstrong FB. Biochemistry. 2nd ed. New York: Oxford University Press; 1983. p. 184–5. 270–271, 283, 285.

    Google Scholar 

  • Biedler JL, Roffler-Tarlov S, Schachner M, Freedman LS. Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer Res. 1978;38:3751–7.

    CAS  PubMed  Google Scholar 

  • Bongaerts GP, van Halteren HK, Verhagen CA, Wagener DJ. Cancer cachexia demonstrates the energetic impact of gluconeogenesis in human metabolism. Med Hypotheses. 2006;67:1213–22.

    Article  CAS  PubMed  Google Scholar 

  • Carman AJ, Vylkova S, Lorenz MC. Role of acetyl coenzyme A synthesis and breakdown in alternative carbon source utilization in Candida albicans. Eukaryot Cell. 2008;7:1733–41.

    Article  CAS  PubMed  Google Scholar 

  • Darling TN, Davis DG, London RE, Blum JJ. Products of Leishmania braziliensis glucose catabolism: release of d-lactate and, under anaerobic conditions, glycerol. Proc Natl Acad Sci U S A. 1987;84:7129–33.

    Article  CAS  PubMed  Google Scholar 

  • Davidow A, Kanaujia GV, Shi L, Kaviar J, Guo X, Sung N, et al. Antibody profiles characteristic of Mycobacterium tuberculosis infection state. Infect Immun. 2005;73:6846–51.

    Article  CAS  PubMed  Google Scholar 

  • De Milito A, Fais S. Tumor acidity, chemoresistance and proton pump inhibitors. Future Oncol. 2005;1:779–86.

    Article  PubMed  Google Scholar 

  • Feala JD, Coquin L, McCulloch AD, Paternostro G. Flexibility in energy metabolism supports hypoxia tolerance in Drosophila flight muscle: metabolomic and computational systems analysis. Mol Syst Biol. 2007;3:99.

    Article  PubMed  Google Scholar 

  • Finklestein JZ, Tittle K, Meshnik R, Weiner J. Murine neuroblastoma: further evaluation of the C1300 model with single antitumor agents. Cancer Chemother Rep. 1975;59:975–83.

    CAS  PubMed  Google Scholar 

  • Gallagher DT, Monbouquette HG, Schröder I, Robinson H, Holden MJ, Smith NN. Structure of alanine dehydrogenase from Archaeoglobus: active site analysis and relation to bacterial cyclodeaminases and mammalian mu crystallin. J Mol Biol. 2004;342:119–30.

    Article  CAS  PubMed  Google Scholar 

  • Guillermo G. Improvement of Escherichia coli production strains by modification of the phosphoenolpyruvate: sugar phosphotransferase system. Microb Cell Fact. 2005;4:14.

    Article  CAS  Google Scholar 

  • Hashimoto SI, Katsumata R. Mechanism of alanine hyperproduction by Arthrobacter oxydans HAP-1: metabolic shift to fermentation under nongrowth aerobic conditions. Appl Environ Microbiol. 1999;65:2781–3.

    CAS  PubMed  Google Scholar 

  • Herrmann PC, Herrmann EC. Oxygen metabolism and a potential role for cytochrome c oxidase in the Warburg effect. J Bioenerg Biomembr. 2007;39:247–50.

    Article  CAS  PubMed  Google Scholar 

  • Johnson AB, Denko N, Barton MC. Hypoxia induces a novel signature of chromatin modifications and global repression of transcription. Mutat Res. 2008;640:174–9.

    CAS  PubMed  Google Scholar 

  • Kawanaka M, Matsushita K, Kato K, Ohsaka A. Glucose metabolism of adult Schistosoma japonicum as revealed by nuclear magnetic resonance spectroscopy with d-[13C6]glucose. Physiol Chem Phys Med NMR. 1989;21:5–12.

    CAS  PubMed  Google Scholar 

  • Kim JW, Gao P, Liu YC, Semenza GL, Dang CV. Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol Cell Biol. 2007;27:7381–93.

    Article  CAS  PubMed  Google Scholar 

  • Kleerebezemab M, Holsa P, Hugenholtza J. Lactic acid bacteria as a cell factory: rerouting of carbon metabolism in Lactococcus lactis by metabolic engineering. Enzyme Microbial Tech. 2000;26:840–8.

    Article  CAS  Google Scholar 

  • Koukourakis MI, Giatromanolaki A, Sivridis E, Gatter KC, Harris AL, Tumour Angiogenesis Research Group. Lactate dehydrogenase 5 expression in operable colorectal cancer: strong association with survival and activated vascular endothelial growth factor pathway—a report of the Tumour Angiogenesis Research Group. J Clin Oncol. 2006;24:4301–8.

    Article  CAS  PubMed  Google Scholar 

  • Koukourakis MI, Giatromanolaki A, Bougioukas G, Sivridis E. Lung cancer: a comparative study of metabolism related protein expression in cancer cells and tumor associated stroma. Cancer Biol Ther. 2007;6:1476–9.

    Article  CAS  PubMed  Google Scholar 

  • Lee SG, Liao JC. Control of acetate production rate in Escherichia coli by regulating expression of single-copy pta using lacQ in multicopy plasmid. J Microbiol Biotechnol. 2008;18:334–7.

    CAS  PubMed  Google Scholar 

  • Lee M, Smith GM, Eiteman MA, Altman E. Aerobic production of alanine by Escherichia coli aceF ldhA mutants expressing the Bacillus sphaericus alaD gene. Appl Microbiol Biotechnol. 2004;65:56–60.

    CAS  PubMed  Google Scholar 

  • Márquez J, Sánchez-Jiménez F, Medina MA, Quesada AR, Núñez de Castro I. Nitrogen metabolism in tumor bearing mice. Arch Biochem Biophys. 1989;268(2):667–75.

    Article  PubMed  Google Scholar 

  • Mazzio EA, Soliman KF. Effects of enhancing mitochondrial oxidative phosphorylation with reducing equivalents and ubiquinone on 1-methyl-4-phenylpyridinium toxicity and complex I–IV damage in neuroblastoma cells. Biochem Pharmacol. 2004;67(6):1167–84.

    Article  CAS  PubMed  Google Scholar 

  • Mekhail K, Khacho M, Gunaratnam L, Lee S. Oxygen sensing by H+: implications for HIF and hypoxic cell memory. Cell Cycle. 2004;3:1027–9.

    CAS  PubMed  Google Scholar 

  • Montero VM, Wright LS, Siegel F. Increased glutamate, GABA and glutamine in lateral geniculate nucleus but not in medial geniculate nucleus caused by visual attention to novelty. Brain Res. 2001;916:152–8.

    Article  CAS  PubMed  Google Scholar 

  • Mugula JK, Nnko SA, Narvhus JA, Sørhaug T. Microbiological and fermentation characteristics of togwa, a Tanzanian fermented food. Int J Food Microbiol. 2003;80:187–99.

    Article  CAS  PubMed  Google Scholar 

  • Ozkan P, Mutharasan R. A rapid method for measuring intracellular pH using BCECF-AM. Biochim Biophys Acta. 2002;1572(1):143–8.

    CAS  PubMed  Google Scholar 

  • Panagou EZ, Schillinger U, Franz CM, Nychas GJ. Microbiological and biochemical profile of cv. Conservolea naturally black olives during controlled fermentation with selected strains of lactic acid bacteria. Food Microbiol. 2008;25:348–58.

    Article  CAS  PubMed  Google Scholar 

  • Pastorekova S, Zatovicova M, Pastorek J. Cancer-associated carbonic anhydrases and their inhibition. Curr Pharm Des. 2008;14:685–98.

    Article  CAS  PubMed  Google Scholar 

  • Rafailidis PI, Kapaskelis A, Christodoulou C, Galani E, Falagas ME. Concurrent M. tuberculosis, Klebsiella pneumoniae, and Candida albicans infection in liver metastasis of bowel carcinoma. Eur J Clin Microbiol Infect Dis. 2008;27:753–5.

    Article  CAS  PubMed  Google Scholar 

  • Ragsdale SW. Enzymology of the wood–Ljungdahl pathway of acetogenesis. Ann N Y Acad Sci. 2008;1125:129–36.

    Article  CAS  PubMed  Google Scholar 

  • Ravot G, Ollivier B, Fardeau ML, Patel BK, Andrews KT, Magot M, et al. l-Alanine production from glucose fermentation by hyperthermophilic members of the domains bacteria and Archaea: a remnant of an ancestral metabolism? Appl Environ Microbiol. 1996;62:2657–9.

    CAS  PubMed  Google Scholar 

  • Silva BM, Andrade PB, Mendes GC, Seabra RM, Ferreira MA. Study of the organic acids composition of quince (Cydonia oblonga Miller) fruit and jam. J Agric Food Chem. 2002;50:2313–7.

    Article  CAS  PubMed  Google Scholar 

  • Starck J, Källenius G, Marklund BI, Andersson DI, Akerlund T. Comparative proteome analysis of Mycobacterium tuberculosis grown under aerobic and anaerobic conditions. Microbiology. 2004;150:3821–9.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, McCaffery JM, Irizarry RA, Boeke JD. Nucleocytosolic acetyl-coenzyme a synthetase is required for histone acetylation and global transcription. Mol Cell. 2006;23:207–17.

    Article  CAS  PubMed  Google Scholar 

  • Ugurbil K, Brown TR, den Hollander JA, Glynn P, Shulman RG. High-resolution 13C nuclear magnetic resonance studies of glucose metabolism in Escherichia coli. Proc Natl Acad Sci U S A. 1978;75:3742–6.

    Article  CAS  PubMed  Google Scholar 

  • Wada M, Narita K, Yokota A. Alanine production in an H+-ATPase- and lactate dehydrogenase-defective mutant of Escherichia coli expressing alanine dehydrogenase. Microbiol Biotechnol. 2007;76:819–25.

    Article  CAS  Google Scholar 

  • Wahl ML, Owen JA, Burd R, Herlands RA, Nogami SS, Rodeck U, et al. Regulation of intracellular pH in human melanoma: potential therapeutic implications. Mol Cancer Ther. 2002;1:617–28.

    CAS  PubMed  Google Scholar 

  • Walenta S, Schroeder T, Mueller-Klieser W. Lactate in solid malignant tumors: potential basis of a metabolic classification in clinical oncology. Curr Med Chem. 2004;11:2195–204.

    CAS  PubMed  Google Scholar 

  • Yoshii Y, Furukawa T, Yoshii H, Mori T, Kiyono Y, Waki A, et al. Cytosolic acetyl-CoA synthetase affected tumor cell survival under hypoxia: the possible function in tumor acetyl-CoA/acetate metabolism. Cancer Sci. 2009;100:821–7.

    Article  CAS  PubMed  Google Scholar 

  • Ziello JE, Jovin IS, Huang Y. Hypoxia-inducible factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia. Yale J Biol Med. 2007;80:51–60.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karam F. A. Soliman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazzio, E.A., Smith, B. & Soliman, K.F.A. Evaluation of endogenous acidic metabolic products associated with carbohydrate metabolism in tumor cells. Cell Biol Toxicol 26, 177–188 (2010). https://doi.org/10.1007/s10565-009-9138-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-009-9138-6

Keywords

Navigation