Skip to main content

Advertisement

Log in

Chloramphenicol induces in vitro growth arrest and apoptosis of human keratinocytes

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Chloramphenicol (CAP) is a broad-spectrum antibacterial drug that is widely used for topical application in ophthalmology and dermatology. In the present study we investigated the influence of CAP on human keratinocyte proliferation and apoptosis in vitro. CAP significantly inhibited proliferation and induced apoptosis of cultivated human keratinocytes, as revealed by incorporation of radioactive thymidine and flow cytometry analysis of intracellular esterase activity in fluorescein diacetate-stained cells, respectively. CAP-induced keratinocyte apoptosis was associated with activation of caspases and increased production of reactive oxygen species. The pro-apoptotic action of CAP was antagonized by the antioxidant agent N-acetylcysteine, the protein synthesis inhibitor cycloheximide, and PD98059, a selective inhibitor of extracellular signal-regulated kinase (ERK) activation. Taken together, these data indicate that CAP inhibits keratinocyte proliferation through induction of oxidative stress and ERK-mediated caspase-dependent apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CAP:

chloramphenicol

CHX:

cycloheximide

DHR:

dihydrorhodamine 123

ERK:

extracellular signal-regulated kinase

FDA:

fluorescein diacetate

LDH:

lactate dehydrogenase

NAC:

N-acetylcysteine

ROS:

reactive oxygen species

TB:

Trypan blue

References

  • Abou-Khalil S, Salem Z, Yunis AA. Mitochondrial metabolism in normal, myeloid, and erythroid hyperplastic rabbit bone marrow: effect of chloramphenicol. Am J Hematol. 1980;8:71–9.

    PubMed  CAS  Google Scholar 

  • Barzanti F, Zoli W, Susino MD, et al.. Simultaneous determination of apoptosis and surface antigen expression in tumor adherent cells. J Biol Regul Homeost Agents. 2001;15:359–65.

    PubMed  CAS  Google Scholar 

  • Bauer PM, Buga GM, Ignarro LJ. Role of p42/p44 mitogen-activated-protein kinase and p21waf1/cip1 in the regulation of vascular smooth muscle cell proliferation by nitric oxide. Proc Natl Acad Sci USA. 2001;98:12802–17.

    Article  PubMed  CAS  Google Scholar 

  • Beltinger C, Fulda S, Kammertoens T, Uckert W, Debatin KM. Mitochondrial amplification of death signals determines thymidine kinase/ganciclovir-triggered activation of apoptosis. Cancer Res. 2000;60:3212–7.

    PubMed  CAS  Google Scholar 

  • Berry M, Gurung A, Easty DL. Toxicity of antibiotics and antifungals on cultured human corneal cells: effect of mixing, exposure and concentration. Eye. 1995;9:110–5.

    PubMed  Google Scholar 

  • Dameshek W. Chloramphenicol–-a new warning. JAMA. 1960;174: 1853–4.

    PubMed  CAS  Google Scholar 

  • Darzynkiewicz Z, Bruno S, Del Bino G, et~al. Features of apoptotic cells measured by flow cytometry. Cytometry. 1992;13:795–8.

    Article  PubMed  CAS  Google Scholar 

  • Decker T, Lohmann-Matthes ML. A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J Immunol Methods. 1998;115:61–9.

    Article  Google Scholar 

  • Edinger AL, Thompson, CB. Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol. 2004;16:663–9.

    Article  PubMed  CAS  Google Scholar 

  • Finkel T. Oxygen radicals and signaling. Curr Opin Cell Biol. 1998;10:248–53.

    Article  PubMed  CAS  Google Scholar 

  • Fraunfelder FT, Bagby GC, Kelly DJ. Fatal aplastic anemia following topical administration of ophthalmic chloramphenicol. Am J Ophthalmol. 1982;93:356–60.

    PubMed  CAS  Google Scholar 

  • Gallenkemper G, Rabe E, Bauer R. Contact sensitization in chronic venous insufficiency: modern wound dressings. Contact Dermatitis. 1998;38:274–8.

    PubMed  CAS  Google Scholar 

  • Guimaraes CA, Linden R. Chloramphenicol induces apoptosis in the developing brain. Neuropharmacology. 2000;39:1673–9.

    Article  PubMed  CAS  Google Scholar 

  • Guy RH, Hadgraft J, Maibach HI. Percutaneous absorption in man: a kinetic approach. Toxicol Appl Pharmacol. 1985;78:123–9.

    Article  PubMed  CAS  Google Scholar 

  • Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL, Korsmeyer SJ. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell. 1993;75:241–51.

    Article  PubMed  CAS  Google Scholar 

  • Holt DE, Andrews CM, Payne JP, Williams TC, Turton JA. The myelotoxicity of chloramphenicol: in vitro and in vivo studies: II: In vivo myelotoxicity in the B6C3F1 mouse. Hum Exp Toxicol. 1998;17:8–17.

    Article  PubMed  CAS  Google Scholar 

  • Isenberg SJ. The fall and rise of chloramphenicol. J AAPOS. 2003;7:307–8.

    Article  PubMed  Google Scholar 

  • Ismail R, Teh LK, Choo EK. Chloramphenicol in children: dose, plasma levels and clinical effects. Ann Trop Paediatr. 1998;18: 123–8.

    PubMed  CAS  Google Scholar 

  • Jassim Al Khaja KA, Sequeira RR, Mathur VS. Trends in ophthalmic antimicrobial utilization pattern in Bahrain between 1993 and 2000: a resurgence of chloramphenicol. Int J Clin Pharmacol Ther. 2003;41:36–41.

    Google Scholar 

  • Kamath S, Sinha S, Shaari E, Young D, Campbell AC. Role of topical antibiotics in hip surgery A prospective randomised study. Injury. 2005;36:783–7.

    Article  PubMed  CAS  Google Scholar 

  • Kane DJ, Sarafian TA, Anton R, et~al. Bcl-2 inhibition of neural death: decreased generation of reactive oxygen species. Science. 1993;262:1274–7.

    PubMed  CAS  Google Scholar 

  • Karbowski M, Kurono C, Wozniak M, et~al. Cycloheximide and 4-OH-TEMPO suppress CAP-induced apoptosis in RL-34 cells via the suppression of the formation of megamitochondria. Biochim Biophys Acta. 1999a; 1449:25–40.

    Article  CAS  Google Scholar 

  • Karbowski M, Kurono C, Wozniak M, et~al. Free radical-induced megamitochondria formation and apoptosis. Free Radic Biol Med. 1999b; 26:396–409.

    Article  CAS  Google Scholar 

  • Kong CT, Holt DE, Ma SK, Lie AK, Chan LC. Effects of antioxidants and a caspase inhibitor on chloramphenicol-induced toxicity of human bone marrow and HL-60 cells. Hum Exp Toxicol. 2000;19:503–10.

    Article  PubMed  CAS  Google Scholar 

  • Lam RF, Lai JS, Ng JS, Rao SK, Law RW, Lam DS. Topical chloramphenicol for eye infections. Hong Kong Med J. 2002;8:44–7.

    PubMed  CAS  Google Scholar 

  • Li CH, Tzeng SL, Cheng YW, Kang JJ. Chloramphenicol-induced mitochondrial stress increases p21 expression and prevents cell apoptosis through a p21-dependent pathway. J Biol Chem. 2005;280:26193–9.

    Article  PubMed  CAS  Google Scholar 

  • Meves A, Stock SN, Beyerle A, Pittelkow MR, Peus D. Vitamin C derivative ascorbyl palmitate promotes ultraviolet-B-induced lipid peroxidation and cytotoxicity in keratinocytes. J Invest Dermatol. 2002;119:1103–8.

    Article  PubMed  CAS  Google Scholar 

  • Peus D, Beyerle A, Vasa M, Pott M, Meves A, Pittelkow MR. Antipsoriatic drug anthralin induces EGF-receptor phosphorylation in keratinocytes: requirement for H$_{2}$O$_{2}$ generation. Exp Dermatol. 2004;13:78–85.

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran A, Moellering DR, Ceaser E, Shiva S, Xu J, Darley-Usmar V. Inhibition of mitochondrial protein synthesis results in increased endothelial cell susceptibility to nitric oxide-induced apoptosis. Proc Natl Acad Sci USA. 2002;99:6643–8.

    Article  PubMed  CAS  Google Scholar 

  • Ratan RR, Murphy TH, Baraban JM. Macromolecular synthesis inhibitors prevent oxidative stress-induced apoptosis in embryonic cortical neurons by shunting cysteine from protein synthesis to glutathione. J Neurosci. 1994;14:4385–92.

    PubMed  CAS  Google Scholar 

  • Robbana-Barnat S, Decloitre F, Frayssinet C, Seigneurin JM, Toucas L, Lafarge-Frayssinet C. Use of human lymphoblastoid cells to detect the toxic effect of chloramphenicol and metabolites possibly involved in aplastic anemia in man. Drug Chem Toxicol.1997;20:239–53.{}

    PubMed  CAS  Google Scholar 

  • Roberts MS. Targeted drug delivery to the skin and deeper tissues: role of physiology, solute structure and disease. Clin Exp Pharmacol Physiol. 1997;24:874–9.

    PubMed  CAS  Google Scholar 

  • Stern GA, Schemmer GB, Farber RD, Gorovoy MS. Effect of topical antibiotic solutions on corneal epithelial wound healing. Arch Ophthalmol. 1983;101:644–7.

    PubMed  CAS  Google Scholar 

  • Trajkovic V, Vuckovic O, Stosic-Grujicic S, et~al. Astrocyte-induced regulatory T cells mitigate CNS autoimmunity. Glia. 2004;47:168–79.

    Google Scholar 

  • Upadhyay MP, Karmacharya PC, Koirala S, et~al. The Bhaktapur eye study: ocular trauma and antibiotic prophylaxis for the prevention of corneal ulceration in Nepal. Br J Ophthalmol. 2001;85:388–92.

    Article  PubMed  CAS  Google Scholar 

  • Yunis AA, Arimura GK, Isildar M. DNA damage induced by CAP and its nitroso derivative: damage in intact cells. Am J Hematol. 1987;24:77–84.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Popadic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popadic, S., Popadic, D., Ramic, Z. et al. Chloramphenicol induces in vitro growth arrest and apoptosis of human keratinocytes. Cell Biol Toxicol 22, 371–379 (2006). https://doi.org/10.1007/s10565-006-0058-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-006-0058-4

Keywords

Navigation