Skip to main content
Log in

Preparation of Co/SiO2 Using Several Glycols for Enhanced Fischer-Tropsch Synthesis Activity and Dispersion of Co0 Nanoparticles with Unique Co0 Particle Size Effect

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Co/SiO2 catalysts with highly dispersed Co0 and reducible Co were prepared by impregnation using an aqueous solution of Co nitrate containing ethylene glycol or its homologs. Addition of glycols enhanced FTS activity by a factor of 4. Particle size of Co0 decreased from 30 to below 6 nm, while TOF of the catalysts was independent of the Co0 particle size.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Reuel RC, Bartholomew CH (1984) J Catal 85:78–88

    Article  CAS  Google Scholar 

  2. Schulz H, Van Steen E, Claeys M (1994) Stud Surf Sci Catal 81:455–460

    Article  CAS  Google Scholar 

  3. Iglesia E (1997) Appl Catal A 161:59–78

    Article  CAS  Google Scholar 

  4. Dry ME (1981) In: Anderson JR, Boudart M (eds) Catalysis science and technology, vol 1. Springer-Verlag, Berlin, ch 4

  5. Davis BH (2001) Fuel Proc Technol 71:157–166

    Article  CAS  Google Scholar 

  6. Dry ME (2002) Catal Today 71:227–241

    Article  CAS  Google Scholar 

  7. Ming J, Koizumi N, Ozaki T, Yamada M (2001) Appl Catal A 209:59–70

    Article  Google Scholar 

  8. Bian G, Fujishita N, Mochizuki T, Ning W, Yamada M (2003) Appl Catal A 252:251–260

    Article  CAS  Google Scholar 

  9. Bian G, Mochizuki T, Fujishita N, Nomoto H, Yamada M (2003) Energ Fuel 17:799–803

    Article  CAS  Google Scholar 

  10. Bezemer GL, Bitter JH, Kuipers HPCE, Oosterbeek H, Holewijn JE, Xu X, Kapteijn F, Von Dillen AJ, De Jong KP (2006) J Am Chem Soc 128:3956–3964

    Article  CAS  Google Scholar 

  11. Sun S, Tsubaki N, Fujimoto K (2000) Appl Catal A 202:121–131

    Article  CAS  Google Scholar 

  12. Feller A, Claeys M, Van Steen E (1999) J Catal 185:120–130

    Article  CAS  Google Scholar 

  13. Prieto G, Martinez A, Concepcion P, Moreno-Tost R (2009) J Catal 266:129–144

    Article  CAS  Google Scholar 

  14. Shinoda M, Zhang Y, Yomeyama Y, Hasegawa K, Tsubaki N (2004) Fuel Proc Technol 86:73–85

    Article  CAS  Google Scholar 

  15. Zhang Y, Koike M, Yang R, Hinchiranan S, Vitidsant T, Tsubaki N (2005) Appl Catal A 292:252–258

    Article  CAS  Google Scholar 

  16. Jacobs G, Chaney JA, Patterson PM, Das TK, Davis BH (2004) Appl Catal A 264:203–212

    Article  CAS  Google Scholar 

  17. Jacobs G, Patterson PM, Das TK, Davis BH (2004) Appl Catal A 270:65–76

    Article  CAS  Google Scholar 

  18. Kraum M, Baerns M (1999) Appl Catal A 186:189–200

    Article  CAS  Google Scholar 

  19. Van Steen E, Sewell GS, Makhothe RA, Micklethwaite C, Manstein H, De Lange M, O’Conner CT (1996) J Catal 162:220–229

    Article  Google Scholar 

  20. Ming H, Baker BG (1995) Appl Catal A 123:23–36

    Article  CAS  Google Scholar 

  21. Trujillano R, Villain F, Louis C, Lambert J-F (2007) J Phys Chem C 111:7152–7164

    Article  CAS  Google Scholar 

  22. Girardon J-S, Lermotov AS, Gengembre L, Chernavskii PA, Constant AG, Kohdakov AY (2005) J Catal 230:339–352

    Article  CAS  Google Scholar 

  23. Mochizuki T, Hara T, Koizumi N, Yamada M (2007) Catal Lett 113:165–169

    Article  CAS  Google Scholar 

  24. Mochizuki T, Hara T, Koizumi N, Yamada M (2007) Appl Catal A 317:97–104

    Article  CAS  Google Scholar 

  25. Mochizuki T, Koizumi N, Hamabe Y, Hara T, Yamada M (2007) J Jpn Petrol Inst 50:262–271

    Article  CAS  Google Scholar 

  26. Koizumi N, Mochizuki T, Yamada M (2009) e-J Surf Sci Nanotech 7:633–640

    Article  CAS  Google Scholar 

  27. Mochizuki T, Hongo D, Satoh T, Koizumi N, Yamada M (2008) Catal Lett 121:52–57

    Article  CAS  Google Scholar 

  28. Mochizuki T, Sato T, Hongo D, Koizumi N, Yamada M (2008) J Jpn Inst Ener 87:132–138

    Article  CAS  Google Scholar 

  29. Mauldin CH, Rouge B (1999) US Patent 5856260

  30. Mauldin CH, Rouge B (2001) US Patent 6331575 B1

  31. Ellis PR, James D, Bishop PT, Casci JL, Lok CM, Kelly GJ (2009) In: Davis BH, Occelli ML (eds) Advances in Fischer-Tropsch synthesis, catalysts and catalysis. CRC Press, New York, ch 1

  32. Borg Ø, Dietzel PDC, Spjelkavik AI, Tveten EZ, Walmsley JC, Diplas S, Eri S, Holmen A, Rytter E (2008) J Catal 259:161–164

    Article  CAS  Google Scholar 

  33. Ohtsuka Y, Arai T, Takasaki S, Tsubouchi N (2003) Energ Fuel 17:804–809

    Article  CAS  Google Scholar 

  34. Liu Y, Hanaoka T, Miyazawa T, Murata K, Okabe K, Sakanishi K (2009) Fuel Proc Technol 90:901–908

    Article  CAS  Google Scholar 

  35. Brown R, Cooper ME, Whan DA (1982) Appl Catal 3:177–186

    Article  CAS  Google Scholar 

  36. Sexton BA, Hughes AE, Turney TW (1986) J Catal 97:390–406

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by the Japan Society for the Promotion of Science (JSPS), Grant-in-Aid for Scientific Research (S), 17106011, 2005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoto Koizumi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koizumi, N., Suzuki, S., Niiyama, S. et al. Preparation of Co/SiO2 Using Several Glycols for Enhanced Fischer-Tropsch Synthesis Activity and Dispersion of Co0 Nanoparticles with Unique Co0 Particle Size Effect. Catal Lett 141, 931–938 (2011). https://doi.org/10.1007/s10562-011-0633-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-011-0633-z

Keywords

Navigation