Skip to main content
Log in

Design, Fabrication and Analysis of Silicon Hollow Microneedles for Transdermal Drug Delivery System for Treatment of Hemodynamic Dysfunctions

  • Original Research
  • Published:
Cardiovascular Engineering

Abstract

In this paper, we present design, fabrication and coupled multifield analysis of hollow out-of-plane silicon microneedles with piezoelectrically actuated microfluidic device for transdermal drug delivery (TDD) system for treatment of cardiovascular or hemodynamic disorders such as hypertension. The mask layout design and fabrication process of silicon microneedles and reservoir involving deep reactive ion etching (DRIE) is first presented. This is followed by actual fabrication of silicon hollow microneedles by a series of combined isotropic and anisotropic etching processes using inductively coupled plasma (ICP) etching technology. Then coupled multifield analysis of a MEMS based piezoelectrically actuated device with integrated silicon microneedles is presented. The coupledfield analysis of hollow silicon microneedle array integrated with piezoelectric micropump has involved structural and fluid field couplings in a sequential structural-fluid analysis on a three-dimensional model of the microfluidic device. The effect of voltage and frequency on silicon membrane deflection and flow rate through the microneedle is investigated in the coupled field analysis using multiple code coupling method. The results of the present study provide valuable benchmark and prediction data to fabricate optimized designs of the silicon hollow microneedle based microfluidic devices for transdermal drug delivery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Aggarwal P, Johnston CR. Geometrical effects in mechanical characterizing of microneedle for biomedical applications. Sens Actuators B. 2004;102:226–34.

    Article  Google Scholar 

  • Ahmadian M, Saidi M, Mehrabian A, Bazargan M, Kenarsari S. Performance of valveless diffuser micropumps under harmonic piezoelectric actuation. In: ASME conference on engineering systems design and analysis. 2006.

  • ANSI/IEEE Std 176. IEEE standard on piezoelectricity. IEEE; 1987. http://standards.ieee.org/reading/ieee/std_public/description/ultrasonics/176-1987_desc.html.

  • Aoyagi S, et al. Biodegradable polymer needle with various tip angles and consideration on insertion mechanism of mosquito’s proboscis. Sens Actuators A. 2008;143:20–8.

    Article  Google Scholar 

  • Arora A, Prausnitzc MR, et al. Micro-scale devices for transdermal drug delivery. Int J Pharm. 2008;364:227–36.

    Article  CAS  PubMed  Google Scholar 

  • Barry BW. Novel mechanisms and devices to enable successful transdermal drug delivery. Eur J Pharm Sci. 2001;14:101–14.

    Article  CAS  PubMed  Google Scholar 

  • Batchelor GK. An introduction to fluid dynamics. University of Cambridge. 1967.

  • BeMent SL, et al. Solid-state electrodes for multichannel multiplexed intracortical neuronal recording. IEEE Trans Biomed Eng. 1986;33(2):230–41.

    Article  CAS  PubMed  Google Scholar 

  • Bodhale DW, Nisar A, Afzulpurkar N. Structural and microfluidic analysis of hollow side-open polymeric microneedles for transdermal drug delivery applications. Microfluid Nanofluid. 2009. doi:10.1007/s10404-009-0467-9.

  • Brown MB, Martin GP, et al. Dermal and transdermal drug delivery systems: current and future prospects. Drug Deliv. 2006;13:175–87.

    Article  CAS  PubMed  Google Scholar 

  • Bussemer T, Otto I, Bodmeier R. Pulsatile drug delivery systems. Crit Rev Ther Drug Carrier Syst. 2001;18(5):433–58.

    CAS  PubMed  Google Scholar 

  • Campbell PK, et al. A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array. IEEE Trans Biomed Eng. 1991;38(8):758–68.

    Article  CAS  PubMed  Google Scholar 

  • Chen J, et al. A multichannel neural probe for selective chemical delivery at the cellular level. IEEE Trans Biomed Eng. 1997;44(8):760–9.

    Article  CAS  PubMed  Google Scholar 

  • Cui Q, Liu C, Xuan F. Study on a piezoelectric micropump for the controlled drug delivery system. Microfluid Nanofluidics. 2007;3(4):377–90.

    Article  Google Scholar 

  • Fan B, Song G, Hussain F. Simulation of piezoelectrically actuated valveless micropump. J Smart Mater Struct. 2005;14:400–5.

    Article  Google Scholar 

  • Frick TB, et al. Resistance forces acting on suture needles. J Biomech. 2001;34:1335–40.

    Article  CAS  PubMed  Google Scholar 

  • Gardeniers HJGE, et al. Silicon micromachined hollow microneedles for transdermal liquid transport. J Microelctromech Syst. 2003;12(6).

  • Gere J, Timoshenko S. Mechanics of materials, 4th edn. 1997.

  • Glasgow I, Lieber S, Aubry N. Parameters influencing pulsed flow mixing in microchannels. Anal Chem. 2004a;76:4825–32.

    Article  CAS  PubMed  Google Scholar 

  • Glasgow I, Batton J, Aubry N. Electroosmotic mixing in microchannels. Lab Chip. 2004b;4:558–62.

    Article  CAS  PubMed  Google Scholar 

  • Griss P, Enoksson P, Tolvanen Laakso HK, Merilainen P, Ollmar S, Stemme G. Micromachined electrodes for biopotential measurements. IEEE ASME J Microelectromech Syst. 2001;10(1):10–6.

    Article  Google Scholar 

  • Griss P, Tolvanen Laakso H, Merilainen P, Stemme G. Characterization of micromachined spiked biopotential electrodes. IEEE Trans Biomed Eng. 2002;49(6):597–604.

    Article  PubMed  Google Scholar 

  • Griss P, et al. Side-opened out of plane microneedles for microfluidics transdermal liquid transfer. J Microelectromech Syst. 2003;12(3):296–301.

    Article  Google Scholar 

  • Guo SX, Pei Z, Wang T, Ye XF. A novel type of pulseless output micropump based on magnet-solenoid actuator. In: IEEE/ICME international conference on complex medical engineering. 2007. p. 96–100.

  • Henry S, et al. Micro machined needles for the transdermal drug delivery of drugs. In: Proceedings of IEEE workshop MEMS. 1998. p. 494–98.

  • Izzo I, Accoto D, Menciassi A, Schmitt L, Dario P. Modelling and experimental validation of a piezoelectric micropump with novel no-moving-part valves. Sens Actuators A. 2007;133:128–40.

    Article  Google Scholar 

  • Jang LS, Li YJ, Lin SJ, Hsu YC, Yao WS, Tsai MC. A stand-alone peristaltic micropump based on piezoelectric actuation. Biomed Microdevices. 2007;9(2):185–94.

    Article  PubMed  Google Scholar 

  • Janna WS. Design of fluid thermal system. 2nd ed. Boston: PWS Pub.; 1998.

    Google Scholar 

  • Karande P, Jain A, et al. Discovery of transdermal penetration enhancers by high- throughput screening. Nat Biotechnol. 2004;22:192–7.

    Article  CAS  PubMed  Google Scholar 

  • Khumpuang S, et al. Design and fabrication of coupled microneedle array and insertion guide array for safe penetration through skin. In: International symposium of micromechatronics and human science. 2003.

  • Kim K, Park D, Lu H, Kim K-H, Lee JB. A tapered hollow metallic microneedle array using backside exposure of SU-8. J Micromech Microeng. 2004;14:597–603.

    Article  CAS  Google Scholar 

  • Matteucci M, et al. A compact and disposable transdermal drug delivery system. Sincrotrone Trieste, I-34012 Basovizza-Trieste, Italy. 2008.

  • Moon SJ, Lee SS. A novel fabrication method of a microneedle array using inclined deep x-ray exposure. J Micromech Microeng. 2005;15:903–11.

    Article  CAS  Google Scholar 

  • Mukherjee EV, et al. Microneedle array for transdermal biological fluid extraction and in situ analysis. Sens Actuators A. 2004;114:267–75.

    Article  Google Scholar 

  • Nguyen NT, Huang XY, Chuan TK. MEMS-micropumps: a review. J Fluids Eng Trans ASME. 2002;124(2):384–92.

    Article  Google Scholar 

  • Nisar A, Afzulpurkar N, Tuantranont A, Mahaisavariya B. Three dimensional transient multifield analysis of a piezoelectric micropump for drug delivery system for treatment of hemodynamic dysfunctions. Cardiovasc Eng. 2008;8(4):203–18.

    Article  PubMed  Google Scholar 

  • Oka K, Aoyagi S, Arai Y, Isono Y, Hashiguchi G, Fujita H. Fabrication of a microneedle for a trace blood test. Sens Actuators A. 2002;97–98:478–85.

    Google Scholar 

  • Paik SJ, et al. In-plane single-crystal-silicon microneedles for minimally invasive micro fluidic systems. Sens Actuators A. 2004;114:276–84.

    Article  Google Scholar 

  • Park JH, Davis S, Yoon YK, Allen MG, Prausnitz MR. Micromachined biodegradable microstructures. In: 16th IEEE international conference on microelectro mechanical systems. Kyoto, Japan. 2003. p. 371–74.

  • Park JH, Allen MG, Prausnitz MR. Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery. J Control Release. 2005;104(1):51–66.

    Article  CAS  PubMed  Google Scholar 

  • Prausnitz MR. Microneedles for transdermal drug delivery. Adv Drug Deliv Rev. 2004;56:581–7.

    Article  CAS  PubMed  Google Scholar 

  • Schreier H, Bouwstra J. Liposomes and niosomes as topical drug carriers-dermal and transdermal drug-delivery. J Control Release. 1994;30:1–15.

    Article  CAS  Google Scholar 

  • Schuetz YB, Naik A, et al. Emerging strategies for the transdermal delivery of peptide and protein drugs. Expert Opin Drug Deliv. 2005;2:533–48.

    Article  CAS  PubMed  Google Scholar 

  • Shibata T, et al. Fabrication and mechanical characterization of microneedle array for cell surgery. In: Actuators and microsystems conference. 2007. p. 719–22.

  • Stoeber B, Liepmann D. Fluid injection through out-of-plane microneedles. Micro technologies in medicine and biology. In: 1st annual international conference. Berkeley, CA. 2000.

  • Stoeber B, Liepmann D. Design, fabrication and testing of a MEMS syringe. Berkeley sensor and actuator center, University of California at Berkeley, CA. 2002.

  • Sun C, Huang K. Numerical characterization of the flow rectification of dynamic microdiffusers. J Micromech Microeng. 2006;16:1331–9.

    Article  Google Scholar 

  • Timoshenko S, Krienger Woinowsky S. Theory of plates and shells. 2nd ed. New York: McGraw-Hill; 1995.

    Google Scholar 

  • Wang X, et al. A novel fabrication approach for microneedles using silicon micromachining technology. In: 1st IEEE international conference on NEMS. 2006. p. 545–49.

  • Wang C, Leu T, Sun J. Unsteady analysis of microvalves with no moving parts. J Mech. 2007;23:9–14.

    Google Scholar 

  • Wilke N, et al. Silicon microneedle electrode array with temperature monitoring for electroporation. Sens Actuators A. 2005a;1090(123–124):319–25.

    Google Scholar 

  • Wilke N, et al. Process optimization and characterization of silicon microneedles fabricated by wet etch technology. Micro Electron J. 2005b;36:650–6.

    CAS  Google Scholar 

  • Yakhot A, Arad M, Ben-Dor G. Numerical investigation of a laminar pulsating flow in a rectangular duct. Int J Numer Methods Fluids. 1999;29:935–50.

    Article  Google Scholar 

  • Yao Q, Xu D, Pan L, Teo A, Ho W, Lee V, et al. CFD simulations of flows in valveless micropumps. Eng Appl Comput Fluid Mech. 2007;1:181–8.

    Google Scholar 

  • Zahn JD, et al. Micro fabricated polysilicon microneedles for minimally invasive biomedical devices. Biomed Microdevices. 2000;2:295–303.

    Article  Google Scholar 

  • Zahn JD, et al. Continuous on-chip micropumping for microneedle enhanced drug delivery. Biomed Microdevices. 2004;6(3):183–90.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank and acknowledge K. Saejok, C. Hruanun, Atthi N. Somwamg, and J. Supadech at Thai Microelectronics Center (TMEC), Thailand for providing DRIE facility and process for microneedle fabrication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. W. Ashraf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashraf, M.W., Tayyaba, S., Nisar, A. et al. Design, Fabrication and Analysis of Silicon Hollow Microneedles for Transdermal Drug Delivery System for Treatment of Hemodynamic Dysfunctions. Cardiovasc Eng 10, 91–108 (2010). https://doi.org/10.1007/s10558-010-9100-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10558-010-9100-5

Keywords

Navigation