Skip to main content
Log in

Reduction in MicroRNA-4488 Expression Induces NFκB Translocation in Venous Endothelial Cells Under Arterial Flow

  • Original Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

Little is known about the molecular interactions among inflammatory responses that damage venous endothelial cells (vECs) during venous-to-arterial flow transition in vein graft diseases. Because arterial flow triggers excessive autophagy and inflammation in vECs, this study aimed to investigate the mediator of inflammation and methods to prevent vEC damage.

Methods

Arterial laminar shear stress (ALSS; 12 dynes/cm2) was applied to vECs via in vitro and ex vivo perfusion systems. Inflammation in vECs was measured using inflammatory protein markers, NFκB translocation, cyclooxygenase-2 (COX-2) and COX-2 and NFκB promoter assays. The involvement of microRNA-4488 (miR-4488) was measured and confirmed by altering the specific miR using a miR-4488 mimic or inhibitor. The potential anti-inflammatory drugs and/or nitric oxide (NO) donor l-arginine (L-Arg) to prevent damage to vECs under ALSS was investigated.

Results

ALSS triggered reactive oxygen species production, excessive autophagy, COX-2 protein expression, and NFκB translocation during vEC inflammation. Reduction in miR-4488 expression was detected in inflamed vECs treated with LPS, lipopolysaccharide (LPS) TNFα, and ALSS. Transfection of miR-4488 mimic (50 nM) prior to ALSS application inhibited the accumulation of inflammatory proteins as well as the translocation of NFκB. Combined treatment of vECs with COX-2-specific inhibitor (SC-236) and L-Arg alleviated the ALSS-induced inflammatory responses. Protective effects of the combined treatment on vECs against ALSS-induced damage were abolished by the application of miR-4488 inhibitor.

Conclusion

We showed that ALSS triggered the COX-2/NFκB pathway to induce vEC inflammation with a reduction in miR-4488. Combination of SC-236 and L-Arg prevented ALSS-induced vEC damage, thus, shows high potential for preventing vein graft diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Conte MS, Bandyk DF, Clowes AW, Moneta GL, Seely L, Lorenz TJ, et al. Results of PREVENT III: a multicenter, randomized trial of edifoligide for the prevention of vein graft failure in lower extremity bypass surgery. J Vasc Surg. 2006;43(4):742–51; discussion 51. https://doi.org/10.1016/j.jvs.2005.12.058.

    Article  PubMed  Google Scholar 

  2. Owens CD, Gasper WJ, Rahman AS, Conte MS. Vein graft failure. J Vasc Surg. 2015;61(1):203–16. https://doi.org/10.1016/j.jvs.2013.08.019.

    Article  PubMed  Google Scholar 

  3. Zou Y, Dietrich H, Hu Y, Metzler B, Wick G, Xu Q. Mouse model of venous bypass graft arteriosclerosis. Am J Pathol. 1998;153(4):1301–10. https://doi.org/10.1016/S0002-9440(10)65675-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Newman MF, Kirchner JL, Phillips-Bute B, Gaver V, Grocott H, Jones RH, et al. Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery. N Engl J Med. 2001;344(6):395–402. https://doi.org/10.1056/NEJM200102083440601.

    Article  CAS  PubMed  Google Scholar 

  5. Harskamp RE, Lopes RD, Baisden CE, de Winter RJ, Alexander JH. Saphenous vein graft failure after coronary artery bypass surgery: pathophysiology, management, and future directions. Ann Surg. 2013;257(5):824–33. https://doi.org/10.1097/SLA.0b013e318288c38d.

    Article  PubMed  Google Scholar 

  6. Pan S. Molecular mechanisms responsible for the atheroprotective effects of laminar shear stress. Antioxid Redox Signal. 2009;11(7):1669–82. https://doi.org/10.1089/ARS.2009.2487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ Res. 2002;90(3):251–62.

    Article  CAS  Google Scholar 

  8. Kwei S, Stavrakis G, Takahas M, Taylor G, Folkman MJ, Gimbrone MA Jr, et al. Early adaptive responses of the vascular wall during venous arterialization in mice. Am J Pathol. 2004;164(1):81–9. https://doi.org/10.1016/S0002-9440(10)63099-4.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chiu JJ, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev. 2011;91(1):327–87. https://doi.org/10.1152/physrev.00047.2009.

    Article  PubMed  Google Scholar 

  10. Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA. 1999;282(21):2035–42.

    Article  CAS  Google Scholar 

  11. Chang YJ, Huang HC, Hsueh YY, Wang SW, Su FC, Chang CH, et al. Role of excessive autophagy induced by mechanical overload in vein graft neointima formation: prediction and prevention. Sci Rep. 2016;6:22147. https://doi.org/10.1038/srep22147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sprague AH, Khalil RA. Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol. 2009;78(6):539–52. https://doi.org/10.1016/j.bcp.2009.04.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xiao L, Liu Y, Wang N. New paradigms in inflammatory signaling in vascular endothelial cells. Am J Physiol Heart Circ Physiol. 2014;306(3):H317–25. https://doi.org/10.1152/ajpheart.00182.2013.

    Article  CAS  PubMed  Google Scholar 

  14. Tak PP, Firestein GS. NF-kappaB: a key role in inflammatory diseases. J Clin Invest. 2001;107(1):7–11. https://doi.org/10.1172/JCI11830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mohan S, Mohan N, Sprague EA. Differential activation of NF-kappa B in human aortic endothelial cells conditioned to specific flow environments. Am J Phys. 1997;273(2 Pt 1):C572–8. https://doi.org/10.1152/ajpcell.1997.273.2.C572.

    Article  CAS  Google Scholar 

  16. van Rooij E, Olson EN. MicroRNAs: powerful new regulators of heart disease and provocative therapeutic targets. J Clin Invest. 2007;117(9):2369–76. https://doi.org/10.1172/JCI33099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Son DJ, Kumar S, Takabe W, Kim CW, Ni CW, Alberts-Grill N, et al. The atypical mechanosensitive microRNA-712 derived from pre-ribosomal RNA induces endothelial inflammation and atherosclerosis. Nat Commun. 2013;4:3000. https://doi.org/10.1038/ncomms4000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fang Y, Davies PF. Site-specific microRNA-92a regulation of Kruppel-like factors 4 and 2 in atherosusceptible endothelium. Arterioscler Thromb Vasc Biol. 2012;32(4):979–87. https://doi.org/10.1161/ATVBAHA.111.244053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kumar S, Kim CW, Simmons RD, Jo H. Role of flow-sensitive microRNAs in endothelial dysfunction and atherosclerosis: mechanosensitive athero-miRs. Arterioscler Thromb Vasc Biol. 2014;34(10):2206–16. https://doi.org/10.1161/ATVBAHA.114.303425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu XY, Fan WD, Fang R, Wu GF. Regulation of microRNA-155 in endothelial inflammation by targeting nuclear factor (NF)-kappaB P65. J Cell Biochem. 2014;115(11):1928–36. https://doi.org/10.1002/jcb.24864.

    Article  CAS  PubMed  Google Scholar 

  21. Hartmann P, Zhou Z, Natarelli L, Wei Y, Nazari-Jahantigh M, Zhu M, et al. Endothelial Dicer promotes atherosclerosis and vascular inflammation by miRNA-103-mediated suppression of KLF4. Nat Commun. 2016;7:10521. https://doi.org/10.1038/ncomms10521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huang S, Lu W, Ge D, Meng N, Li Y, Su L, et al. A new microRNA signal pathway regulated by long noncoding RNA TGFB2-OT1 in autophagy and inflammation of vascular endothelial cells. Autophagy. 2015;11(12):2172–83. https://doi.org/10.1080/15548627.2015.1106663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Miyake T, Aoki M, Shiraya S, Tanemoto K, Ogihara T, Kaneda Y, et al. Inhibitory effects of NFkappaB decoy oligodeoxynucleotides on neointimal hyperplasia in a rabbit vein graft model. J Mol Cell Cardiol. 2006;41(3):431–40. https://doi.org/10.1016/j.yjmcc.2006.04.006.

    Article  CAS  PubMed  Google Scholar 

  24. Farkouh ME, Greenberg BP. An evidence-based review of the cardiovascular risks of nonsteroidal anti-inflammatory drugs. Am J Cardiol. 2009;103(9):1227–37. https://doi.org/10.1016/j.amjcard.2009.01.014.

    Article  CAS  PubMed  Google Scholar 

  25. Ricciotti E, FitzGerald GA. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol. 2011;31(5):986–1000. https://doi.org/10.1161/ATVBAHA.110.207449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mukherjee D, Nissen SE, Topol EJ. Risk of cardiovascular events associated with selective COX-2 inhibitors. JAMA. 2001;286(8):954–9.

    Article  CAS  Google Scholar 

  27. Liou J-Y, Wu C-C, Chen B-R, Yen LB, Wu KK. Nonsteroidal anti-inflammatory drugs induced endothelial apoptosis by perturbing peroxisome proliferator-activated receptor-δ transcriptional pathway. Mol Pharmacol. 2008;74(5):1399–406. https://doi.org/10.1124/mol.108.049569.

    Article  CAS  PubMed  Google Scholar 

  28. Mitchell JA, Lucas R, Vojnovic I, Hasan K, Pepper JR, Warner TD. Stronger inhibition by nonsteroid anti-inflammatory drugs of cyclooxygenase-1 in endothelial cells than platelets offers an explanation for increased risk of thrombotic events. FASEB J. 2006;20(14):2468–75. https://doi.org/10.1096/fj.06-6615com.

    Article  CAS  PubMed  Google Scholar 

  29. West NE, Qian H, Guzik TJ, Black E, Cai S, George SE, et al. Nitric oxide synthase (nNOS) gene transfer modifies venous bypass graft remodeling: effects on vascular smooth muscle cell differentiation and superoxide production. Circulation. 2001;104(13):1526–32.

    Article  CAS  Google Scholar 

  30. Hsieh HJ, Liu CA, Huang B, Tseng AH, Wang DL. Shear-induced endothelial mechanotransduction: the interplay between reactive oxygen species (ROS) and nitric oxide (NO) and the pathophysiological implications. J Biomed Sci. 2014;21:3. https://doi.org/10.1186/1423-0127-21-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huang CW, Huang CC, Chen YL, Fan SC, Hsueh YY, Ho CJ, et al. Shear stress induces differentiation of endothelial lineage cells to protect neonatal brain from hypoxic-ischemic injury through NRP1 and VEGFR2 signaling. Biomed Res Int. 2015;2015:862485. https://doi.org/10.1155/2015/862485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schroer K, Zhu Y, Saunders MA, Deng WG, Xu XM, Meyer-Kirchrath J, et al. Obligatory role of cyclic adenosine monophosphate response element in cyclooxygenase-2 promoter induction and feedback regulation by inflammatory mediators. Circulation. 2002;105(23):2760–5.

    Article  CAS  Google Scholar 

  33. Frangos JA, Eskin SG, McIntire LV, Ives CL. Flow effects on prostacyclin production by cultured human endothelial cells. Science. 1985;227(4693):1477–9.

    Article  CAS  Google Scholar 

  34. Galie PA, Nguyen DH, Choi CK, Cohen DM, Janmey PA, Chen CS. Fluid shear stress threshold regulates angiogenic sprouting. Proc Natl Acad Sci U S A. 2014;111(22):7968–73. https://doi.org/10.1073/pnas.1310842111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Muto A, Model L, Ziegler K, Eghbalieh SD, Dardik A. Mechanisms of vein graft adaptation to the arterial circulation: insights into the neointimal algorithm and management strategies. Circ J. 2010;74(8):1501–12.

    Article  CAS  Google Scholar 

  36. Kudo FA, Muto A, Maloney SP, Pimiento JM, Bergaya S, Fitzgerald TN, et al. Venous identity is lost but arterial identity is not gained during vein graft adaptation. Arterioscler Thromb Vasc Biol. 2007;27(7):1562–71. https://doi.org/10.1161/atvbaha.107.143032.

    Article  CAS  PubMed  Google Scholar 

  37. Wang LM, Zhao N, Zhang J, Sun QF, Yang CZ, Yang PS. Tumor necrosis factor-alpha inhibits osteogenic differentiation of pre-osteoblasts by downregulation of EphB4 signaling via activated nuclear factor-kappaB signaling pathway. J Periodontal Res. 2018;53(1):66–72. https://doi.org/10.1111/jre.12488.

    Article  CAS  PubMed  Google Scholar 

  38. Davies PF, Mundel T, Barbee KA. A mechanism for heterogeneous endothelial responses to flow in vivo and in vitro. J Biomech. 1995;28(12):1553–60.

    Article  CAS  Google Scholar 

  39. Lee ES, Boldo LS, Fernandez BO, Feelisch M, Harmsen MC. Suppression of TAK1 pathway by shear stress counteracts the inflammatory endothelial cell phenotype induced by oxidative stress and TGF-beta1. Sci Rep. 2017;7:42487–14. https://doi.org/10.1038/srep42487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Oeckinghaus A, Ghosh S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol. 2009;1(4):a000034. https://doi.org/10.1101/cshperspect.a000034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wong BC, Jiang X, Fan XM, Lin MC, Jiang SH, Lam SK, et al. Suppression of RelA/p65 nuclear translocation independent of IkappaB-alpha degradation by cyclooxygenase-2 inhibitor in gastric cancer. Oncogene. 2003;22(8):1189–97. https://doi.org/10.1038/sj.onc.1206234.

    Article  CAS  PubMed  Google Scholar 

  42. Poligone B, Baldwin AS. Positive and negative regulation of NF-kappaB by COX-2: roles of different prostaglandins. J Biol Chem. 2001;276(42):38658–64. https://doi.org/10.1074/jbc.M106599200.

    Article  CAS  PubMed  Google Scholar 

  43. Rahman A, Fazal F. Blocking NF-kappaB: an inflammatory issue. Proc Am Thorac Soc. 2011;8(6):497–503. https://doi.org/10.1513/pats.201101-009MW.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Min W, Pober JS. TNF initiates E-selectin transcription in human endothelial cells through parallel TRAF-NF-kappa B and TRAF-RAC/CDC42-JNK-c-Jun/ATF2 pathways. J Immunol. 1997;159(7):3508–18.

    CAS  PubMed  Google Scholar 

  45. Boon RA, Hergenreider E, Dimmeler S. Atheroprotective mechanisms of shear stress-regulated microRNAs. Thromb Haemost. 2012;108(4):616–20. https://doi.org/10.1160/TH12-07-0491.

    Article  CAS  PubMed  Google Scholar 

  46. Woo MY, Yun SJ, Cho O, Kim K, Lee ES, Park S. MicroRNAs differentially expressed in Behcet disease are involved in interleukin-6 production. J Inflamm (Lond). 2016;13:22. https://doi.org/10.1186/s12950-016-0130-7.

    Article  CAS  Google Scholar 

  47. Chang YJ, Li YS, Wu CC, Wang KC, Huang TC, Chen Z, et al. Extracellular microRNA-92a mediates endothelial cell-macrophage communication. Arterioscler Thromb Vasc Biol. 2019;39(12):2492–504. https://doi.org/10.1161/ATVBAHA.119.312707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li X, Gao L, Cui Q, Gary BD, Dyess DL, Taylor W, et al. Sulindac inhibits tumor cell invasion by suppressing NF-kappaB-mediated transcription of microRNAs. Oncogene. 2012;31(48):4979–86. https://doi.org/10.1038/onc.2011.655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Osanai T, Fujita N, Fujiwara N, Nakano T, Takahashi K, Guan W, et al. Cross talk of shear-induced production of prostacyclin and nitric oxide in endothelial cells. Am J Physiol Heart Circ Physiol. 2000;278(1):H233–8. https://doi.org/10.1152/ajpheart.2000.278.1.H233.

    Article  CAS  PubMed  Google Scholar 

  50. Anning PB, Coles B, Morton J, Wang H, Uddin J, Morrow JD, et al. Nitric oxide deficiency promotes vascular side effects of cyclooxygenase inhibitors. Blood. 2006;108(13):4059–62. https://doi.org/10.1182/blood-2006-02-005330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mitchell JA, Ali F, Bailey L, Moreno L, Harrington LS. Role of nitric oxide and prostacyclin as vasoactive hormones released by the endothelium. Exp Physiol. 2008;93(1):141–7. https://doi.org/10.1113/expphysiol.2007.038588.

    Article  CAS  PubMed  Google Scholar 

  52. Pathi SS, Jutooru I, Chadalapaka G, Sreevalsan S, Anand S, Thatcher GR, et al. GT-094, a NO-NSAID, inhibits colon cancer cell growth by activation of a reactive oxygen species-microRNA-27a: ZBTB10-specificity protein pathway. Mol Cancer Res. 2011;9(2):195–202. https://doi.org/10.1158/1541-7786.MCR-10-0363.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by grants from the National Health Research Institutes of Taiwan (NHRI-EX107-10525EI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Ching Wu.

Ethics declarations

This study was funded by the National Health Research Institutes of Taiwan (Grant Number NHRI-EX107-10525EI).

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval for Animals

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed and approved by the IACUC of National Cheng Kung University (IACUC approval number: 105005).

Ethical Approval Human Sample

All procedures performed in studies involving human umbilical cord collection were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards with the approval of Institutional Review Board (IRB) of the National Cheng Kung University Hospital (IRB approval number: A-ER-104-063).

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, SY., Huang, CW., Huang, TC. et al. Reduction in MicroRNA-4488 Expression Induces NFκB Translocation in Venous Endothelial Cells Under Arterial Flow. Cardiovasc Drugs Ther 35, 61–71 (2021). https://doi.org/10.1007/s10557-020-06944-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-020-06944-8

Keywords

Navigation