Skip to main content

Advertisement

Log in

Pitavastatin Regulates Helper T-Cell Differentiation and Ameliorates Autoimmune Myocarditis in Mice

  • ORIGINAL ARTICLE
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

Experimental autoimmune myocarditis (EAM) is a mouse model of inflammatory cardiomyopathy, and the involvement of T helper (Th) 1 and Th17 cytokines has been demonstrated. Accumulated evidence has shown that statins have anti-inflammatory and immunomodulatory effects; however, the mechanism has not been fully elucidated. This study was designed to test the hypothesis that pitavastatin affects T cell-mediated autoimmunity through inhibiting Th1 and Th17 responses and reduces the severity of EAM in mice.

Methods

The EAM model was established in BALB/c mice by immunization with murine α-myosin heavy chain. Mice were fed pitavastatin (5 mg/kg) or vehicle once daily for 3 weeks from day 0 to day 21 after immunization.

Results

Pitavastatin reduced the pathophysiological severity of the myocarditis. Pitavastatin treatment inhibited the phosphorylation of signal transducer and activator of transcription (STAT)3 and STAT4, which have key roles in the Th1 and Th17 lineage commitment, respectively, in the heart, and suppressed production of Th1 cytokine interferon-γ and Th17 cytokine interleukin-17 from autoreactive CD4+ T cells. In in vitro T-cell differentiation experiments, pitavastatin-treated T cells failed to differentiate into Th1 and Th17 cells through inhibiting the transcription of T-box expressed in T-cells (T-bet) and RAR-related orphan receptor γt (RORγT) which have critical roles in the development of Th1 and Th17 cells, respectively, and this failure was rescued by adding mevalonate.

Conclusions

Pitavastatin inhibits Th1 and Th17 responses and ameliorates EAM. These results suggest that statins may be a promising novel therapeutic strategy for the clinical treatment of myocarditis and inflammatory cardiomyopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brown CA, O’Connell JB. Myocarditis and idiopathic dilated cardiomyopathy. Am J Med. 1995;99(3):309–14.

    Article  PubMed  CAS  Google Scholar 

  2. Caforio AL, Mahon NJ, Tona F, McKenna WJ. Circulating cardiac autoantibodies in dilated cardiomyopathy and myocarditis: pathogenetic and clinical significance. Eur J Heart Fail. 2002;4(4):411–7.

    Article  PubMed  Google Scholar 

  3. Lauer B, Schannwell M, Kuhl U, Strauer BE, Schultheiss HP. Antimyosin autoantibodies are associated with deterioration of systolic and diastolic left ventricular function in patients with chronic myocarditis. J Am Coll Cardiol. 2000;35(1):11–8.

    Article  PubMed  CAS  Google Scholar 

  4. Frustaci A, Chimenti C, Calabrese F, Pieroni M, Thiene G, Maseri A. Immunosuppressive therapy for active lymphocytic myocarditis: virological and immunologic profile of responders versus nonresponders. Circulation. 2003;107(6):857–63.

    Article  PubMed  Google Scholar 

  5. Caforio AL, Goldman JH, Haven AJ, Baig KM, Libera LD, McKenna WJ. Circulating cardiac-specific autoantibodies as markers of autoimmunity in clinical and biopsy-proven myocarditis. The Myocarditis Treatment Trial Investigators. Eur Heart J. 1997;18(2):270–5.

    Article  PubMed  CAS  Google Scholar 

  6. Fairweather D, Kaya Z, Shellam GR, Lawson CM, Rose NR. From infection to autoimmunity. J Autoimmun. 2001;16(3):175–86.

    Article  PubMed  CAS  Google Scholar 

  7. Neu N, Rose NR, Beisel KW, Herskowitz A, Gurri-Glass G, Craig SW. Cardiac myosin induces myocarditis in genetically predisposed mice. J Immunol. 1987;139(11):3630–6.

    PubMed  CAS  Google Scholar 

  8. Eriksson U, Kurrer MO, Schmitz N, Marsch SC, Fontana A, Eugster HP, et al. Interleukin-6-deficient mice resist development of autoimmune myocarditis associated with impaired upregulation of complement C3. Circulation. 2003;107(2):320–5.

    Article  PubMed  CAS  Google Scholar 

  9. Eriksson U, Penninger JM. Autoimmune heart failure: new understandings of pathogenesis. Int J Biochem Cell Biol. 2005;37(1):27–32.

    Article  PubMed  CAS  Google Scholar 

  10. Tajiri K, Imanaka-Yoshida K, Matsubara A, Tsujimura Y, Hiroe M, Naka T, et al. Suppressor of cytokine signaling 1 DNA administration inhibits inflammatory and pathogenic responses in autoimmune myocarditis. J Immunol. 2012;189(4):2043–53.

    Article  PubMed  CAS  Google Scholar 

  11. Boekholdt SM, Arsenault BJ, Mora S, Pedersen TR, LaRosa JC, Nestel PJ, et al. Association of LDL cholesterol, non-HDL cholesterol, and apolipoprotein B levels with risk of cardiovascular events among patients treated with statins: a meta-analysis. JAMA. 2012;307(12):1302–9.

    Article  PubMed  CAS  Google Scholar 

  12. Ghittoni R, Lazzerini PE, Pasini FL, Baldari CT. T lymphocytes as targets of statins: molecular mechanisms and therapeutic perspectives. Inflamm Allergy Drug Targets. 2007;6(1):3–16.

    Article  PubMed  CAS  Google Scholar 

  13. Greenwood J, Walters CE, Pryce G, Kanuga N, Beraud E, Baker D, et al. Lovastatin inhibits brain endothelial cell Rho-mediated lymphocyte migration and attenuates experimental autoimmune encephalomyelitis. FASEB J. 2003;17(8):905–7.

    PubMed  CAS  Google Scholar 

  14. Wang Y, Li D, Jones D, Bassett R, Sale GE, Khalili J, et al. Blocking LFA-1 activation with lovastatin prevents graft-versus-host disease in mouse bone marrow transplantation. Biol Blood Marrow Transplant. 2009;15(12):1513–22.

    Article  PubMed  CAS  Google Scholar 

  15. Aktas O, Waiczies S, Smorodchenko A, Dorr J, Seeger B, Prozorovski T, et al. Treatment of relapsing paralysis in experimental encephalomyelitis by targeting Th1 cells through atorvastatin. J Exp Med. 2003;197(6):725–33.

    Article  PubMed  CAS  Google Scholar 

  16. Youssef S, Stuve O, Patarroyo JC, Ruiz PJ, Radosevich JL, Hur EM, et al. The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature. 2002;420(6911):78–84.

    Article  PubMed  CAS  Google Scholar 

  17. Zhang X, Jin J, Peng X, Ramgolam VS, Markovic-Plese S. Simvastatin inhibits IL-17 secretion by targeting multiple IL-17-regulatory cytokines and by inhibiting the expression of IL-17 transcription factor RORC in CD4+ lymphocytes. J Immunol. 2008;180(10):6988–96.

    PubMed  CAS  Google Scholar 

  18. Sonderegger I, Iezzi G, Maier R, Schmitz N, Kurrer M, Kopf M. GM-CSF mediates autoimmunity by enhancing IL-6-dependent Th17 cell development and survival. J Exp Med. 2008;205(10):2281–94.

    Article  PubMed  CAS  Google Scholar 

  19. Valaperti A, Marty RR, Kania G, Germano D, Mauermann N, Dirnhofer S, et al. CD11b+ monocytes abrogate Th17 CD4+ T cell-mediated experimental autoimmune myocarditis. J Immunol. 2008;180(4):2686–95.

    PubMed  CAS  Google Scholar 

  20. Eriksson U, Ricci R, Hunziker L, Kurrer MO, Oudit GY, Watts TH, et al. Dendritic cell-induced autoimmune heart failure requires cooperation between adaptive and innate immunity. Nat Med. 2003;9(12):1484–90.

    Article  PubMed  CAS  Google Scholar 

  21. Pinchuk LM, Filipov NM. Differential effects of age on circulating and splenic leukocyte populations in C57BL/6 and BALB/c male mice. Immun Ageing. 2008;5:1.

    Article  PubMed  Google Scholar 

  22. Cihakova D, Barin JG, Afanasyeva M, Kimura M, Fairweather D, Berg M, et al. Interleukin-13 protects against experimental autoimmune myocarditis by regulating macrophage differentiation. Am J Pathol. 2008;172(5):1195–208.

    Article  PubMed  CAS  Google Scholar 

  23. Darnell Jr JE. STATs and gene regulation. Science. 1997;277(5332):1630–5.

    Article  PubMed  CAS  Google Scholar 

  24. Yang XO, Panopoulos AD, Nurieva R, Chang SH, Wang D, Watowich SS, et al. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem. 2007;282(13):9358–63.

    Article  PubMed  CAS  Google Scholar 

  25. Zhou L, Ivanov II, Spolski R, Min R, Shenderov K, Egawa T, et al. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol. 2007;8(9):967–74.

    Article  PubMed  CAS  Google Scholar 

  26. Shevach EM, DiPaolo RA, Andersson J, Zhao DM, Stephens GL, Thornton AM. The lifestyle of naturally occurring CD4+ CD25+ Foxp3+ regulatory T cells. Immunol Rev. 2006;212:60–73.

    Article  PubMed  CAS  Google Scholar 

  27. Zheng Y, Rudensky AY. Foxp3 in control of the regulatory T cell lineage. Nat Immunol. 2007;8(5):457–62.

    Article  PubMed  CAS  Google Scholar 

  28. Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell. 2000;100(6):655–69.

    Article  PubMed  CAS  Google Scholar 

  29. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 2006;126(6):1121–33.

    Article  PubMed  CAS  Google Scholar 

  30. Yang XO, Pappu BP, Nurieva R, Akimzhanov A, Kang HS, Chung Y, et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity. 2008;28(1):29–39.

    Article  PubMed  CAS  Google Scholar 

  31. Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS, et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science. 1997;275(5304):1320–3.

    Article  PubMed  CAS  Google Scholar 

  32. Liu W, Li WM, Gao C, Sun NL. Effects of atorvastatin on the Th1/Th2 polarization of ongoing experimental autoimmune myocarditis in Lewis rats. J Autoimmun. 2005;25(4):258–63.

    Article  PubMed  Google Scholar 

  33. Gor DO, Rose NR, Greenspan NS. TH1-TH2: a procrustean paradigm. Nat Immunol. 2003;4(6):503–5.

    Article  PubMed  CAS  Google Scholar 

  34. Nishikubo K, Imanaka-Yoshida K, Tamaki S, Hiroe M, Yoshida T, Adachi Y, et al. Th1-type immune responses by Toll-like receptor 4 signaling are required for the development of myocarditis in mice with BCG-induced myocarditis. J Autoimmun. 2007;29(2–3):146–53.

    Article  PubMed  CAS  Google Scholar 

  35. Afanasyeva M, Wang Y, Kaya Z, Stafford EA, Dohmen KM, Sadighi Akha AA, et al. Interleukin-12 receptor/STAT4 signaling is required for the development of autoimmune myocarditis in mice by an interferon-gamma-independent pathway. Circulation. 2001;104(25):3145–51.

    Article  PubMed  CAS  Google Scholar 

  36. Eriksson U, Kurrer MO, Bingisser R, Eugster HP, Saremaslani P, Follath F, et al. Lethal autoimmune myocarditis in interferon-gamma receptor-deficient mice: enhanced disease severity by impaired inducible nitric oxide synthase induction. Circulation. 2001;103(1):18–21.

    Article  PubMed  CAS  Google Scholar 

  37. Rangachari M, Mauermann N, Marty RR, Dirnhofer S, Kurrer MO, Komnenovic V, et al. T-bet negatively regulates autoimmune myocarditis by suppressing local production of interleukin 17. J Exp Med. 2006;203(8):2009–19.

    Article  PubMed  CAS  Google Scholar 

  38. Ghoreschi K, Laurence A, Yang XP, Hirahara K, O’Shea JJ. T helper 17 cell heterogeneity and pathogenicity in autoimmune disease. Trends Immunol. 2011;32(9):395–401.

    Article  PubMed  CAS  Google Scholar 

  39. Baldeviano GC, Barin JG, Talor MV, Srinivasan S, Bedja D, Zheng D, et al. Interleukin-17A is dispensable for myocarditis but essential for the progression to dilated cardiomyopathy. Circ Res. 2010;106(10):1646–55.

    Article  PubMed  CAS  Google Scholar 

  40. Ohshima M, Yamahara K, Ishikane S, Harada K, Tsuda H, Otani K, et al. Systemic transplantation of allogenic fetal membrane-derived mesenchymal stem cells suppresses Th1 and Th17 T cell responses in experimental autoimmune myocarditis. J Mol Cell Cardiol. 2012;53(3):420–8.

    Article  PubMed  CAS  Google Scholar 

  41. Sonderegger I, Rohn TA, Kurrer MO, Iezzi G, Zou Y, Kastelein RA, et al. Neutralization of IL-17 by active vaccination inhibits IL-23-dependent autoimmune myocarditis. Eur J Immunol. 2006;36(11):2849–56.

    Article  PubMed  CAS  Google Scholar 

  42. Luger D, Silver PB, Tang J, Cua D, Chen Z, Iwakura Y, et al. Either a Th17 or a Th1 effector response can drive autoimmunity: conditions of disease induction affect dominant effector category. J Exp Med. 2008;205(4):799–810.

    Article  PubMed  CAS  Google Scholar 

  43. Kagami S, Owada T, Kanari H, Saito Y, Suto A, Ikeda K, et al. Protein geranylgeranylation regulates the balance between Th17 cells and Foxp3+ regulatory T cells. Int Immunol. 2009;21(6):679–89.

    Article  PubMed  CAS  Google Scholar 

  44. Greenwood J, Steinman L, Zamvil SS. Statin therapy and autoimmune disease: from protein prenylation to immunomodulation. Nat Rev Immunol. 2006;6(5):358–70.

    Article  PubMed  CAS  Google Scholar 

  45. Kim TG, Byamba D, Wu WH, Lee MG. Statins inhibit chemotactic interaction between CCL20 and CCR6 in vitro: possible relevance to psoriasis treatment. Exp Dermatol. 2011;20(10):855–7.

    Article  PubMed  Google Scholar 

  46. Mausner-Fainberg K, Luboshits G, Mor A, Maysel-Auslender S, Rubinstein A, Keren G, et al. The effect of HMG-CoA reductase inhibitors on naturally occurring CD4+CD25+ T cells. Atherosclerosis. 2008;197(2):829–39.

    Article  PubMed  CAS  Google Scholar 

  47. Tang TT, Song Y, Ding YJ, Liao YH, Yu X, Du R, et al. Atorvastatin upregulates regulatory T cells and reduces clinical disease activity in patients with rheumatoid arthritis. J Lipid Res. 2011;52(5):1023–32.

    Article  PubMed  CAS  Google Scholar 

  48. Mira E, Leon B, Barber DF, Jimenez-Baranda S, Goya I, Almonacid L, et al. Statins induce regulatory T cell recruitment via a CCL1 dependent pathway. J Immunol. 2008;181(5):3524–34.

    PubMed  CAS  Google Scholar 

  49. Kim YC, Kim KK, Shevach EM. Simvastatin induces Foxp3+ T regulatory cells by modulation of transforming growth factor-beta signal transduction. Immunology. 2010;130(4):484–93.

    Article  PubMed  CAS  Google Scholar 

  50. Liao JK, Laufs U. Pleiotropic effects of statins. Annu Rev Pharmacol Toxicol. 2005;45:89–118.

    Article  PubMed  CAS  Google Scholar 

  51. Dunn SE, Youssef S, Goldstein MJ, Prod’homme T, Weber MS, Zamvil SS, et al. Isoprenoids determine Th1/Th2 fate in pathogenic T cells, providing a mechanism of modulation of autoimmunity by atorvastatin. J Exp Med. 2006;203(2):401–12.

    Article  PubMed  CAS  Google Scholar 

  52. Jorritsma PJ, Brogdon JL, Bottomly K. Role of TCR-induced extracellular signal-regulated kinase activation in the regulation of early IL-4 expression in naive CD4+ T cells. J Immunol. 2003;170(5):2427–34.

    PubMed  CAS  Google Scholar 

  53. Badou A, Savignac M, Moreau M, Leclerc C, Foucras G, Cassar G, et al. Weak TCR stimulation induces a calcium signal that triggers IL-4 synthesis, stronger TCR stimulation induces MAP kinases that control IFN-gamma production. Eur J Immunol. 2001;31(8):2487–96.

    Article  PubMed  CAS  Google Scholar 

  54. Rincon M, Flavell RA. Reprogramming transcription during the differentiation of precursor CD4+ T cells into effector Th1 and Th2 cells. Microbes Infect. 1999;1(1):43–50.

    Article  PubMed  CAS  Google Scholar 

  55. Aspuria PJ, Tamanoi F. The Rheb family of GTP-binding proteins. Cell Signal. 2004;16(10):1105–12.

    Article  PubMed  CAS  Google Scholar 

  56. Delgoffe GM, Pollizzi KN, Waickman AT, Heikamp E, Meyers DJ, Horton MR, et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol. 2011;12(4):295–303.

    Article  PubMed  CAS  Google Scholar 

  57. Buerger C, DeVries B, Stambolic V. Localization of Rheb to the endomembrane is critical for its signaling function. Biochem Biophys Res Commun. 2006;344(3):869–80.

    Article  PubMed  CAS  Google Scholar 

  58. Wagner RJ, Martin KA, Powell RJ, Rzucidlo EM. Lovastatin induces VSMC differentiation through inhibition of Rheb and mTOR. Am J Physiol Cell Physiol. 2010;299(1):C119–27.

    Article  PubMed  CAS  Google Scholar 

  59. Finlay GA, Malhowski AJ, Liu Y, Fanburg BL, Kwiatkowski DJ, Toksoz D. Selective inhibition of growth of tuberous sclerosis complex 2 null cells by atorvastatin is associated with impaired Rheb and Rho GTPase function and reduced mTOR/S6 kinase activity. Cancer Res. 2007;67(20):9878–86.

    Article  PubMed  CAS  Google Scholar 

  60. Malek TR. The biology of interleukin-2. Annu Rev Immunol. 2008;26:453–79.

    Article  PubMed  CAS  Google Scholar 

  61. Butcher EC, Picker LJ. Lymphocyte homing and homeostasis. Science. 1996;272(5258):60–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Brian Purdue of the Medical English Communications Center of the University of Tsukuba for revising this manuscript. This work was supported by the University of Tsukuba Research Infrastructure Support Program.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuko Tajiri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(EPS 1702 kb)

High Resolution image

(JPEG 556 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tajiri, K., Shimojo, N., Sakai, S. et al. Pitavastatin Regulates Helper T-Cell Differentiation and Ameliorates Autoimmune Myocarditis in Mice. Cardiovasc Drugs Ther 27, 413–424 (2013). https://doi.org/10.1007/s10557-013-6464-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-013-6464-y

Keywords

Navigation