Skip to main content

Advertisement

Log in

KISS1 in metastatic cancer research and treatment: potential and paradoxes

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The significance of KISS1 goes beyond its original discovery as a metastasis suppressor. Its function as a neuropeptide involved in diverse physiologic processes is more well studied. Enthusiasm regarding KISS1 has cumulated in clinical trials in multiple fields related to reproduction and metabolism. But its cancer therapeutic space is unsettled. This review focuses on collating data from cancer and non-cancer fields in order to understand shared and disparate signaling that might inform clinical development in the cancer therapeutic and biomarker space. Research has focused on amino acid residues 68-121 (kisspeptin 54), binding to the KISS1 receptor and cellular responses. Evidence and counterevidence regarding this canonical pathway require closer look at the covariates so that the incredible potential of KISS1 can be realized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DAG:

Diacylglycerol

E2 :

Estrogen

ER:

Estrogen receptor

ERK:

Extracellular signal-regulated kinase

FSH:

Follicle-stimulating hormone

GPCR:

G protein-coupled receptor

IP3:

Inositol trisphosphate

LH:

Luteinizing hormone

MAPK:

Mitogen activate protein kinase

PI3K:

Phosphatidylinositol 3-kinase

PIP2:

Phosphatidylinositol (4,5)-bisphosphate

PLC:

Phospholipase C

SNP:

Single-nucleotide polymorphism

TNBC:

Triple-negative breast cancer

References

  1. Lee, J.-H., Doumen, D. J., & Welch, D. R. (1996). Cloning of a novel gene, KiSS-1, which is responsible for metastasis suppression in chromosome 6/human melanoma hybrid cells. PNAS, 37, 531.

    Google Scholar 

  2. Ohtaki, T., Shintani, Y., Honda, S., Matsumoto, H., Hori, A., Kanehashi, K., et al. (2001). Metastasis suppressor gene KiSS1 encodes peptide ligand of a G-protein-coupled receptor. Nature, 411(6837), 613–617.

    CAS  PubMed  Google Scholar 

  3. Kotani, M., Detheux, M., Vandenbogaerde, A., Communi, D., Vanderwinden, J. M., Le Poul, E., et al. (2001). The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. The Journal of Biological Chemistry, 276(37), 34631–34636.

    CAS  PubMed  Google Scholar 

  4. Muir, A. I., Chamberlain, L., Elshourbagy, N. A., Michalovich, D., Moore, D. J., Calamari, A., et al. (2001). AXOR12, a novel human G protein-coupled receptor, activated by the peptide KiSS-1. The Journal of Biological Chemistry, 276(31), 28969–28975.

    CAS  PubMed  Google Scholar 

  5. Uenoyama, Y., Inoue, N., Maeda, K. I., & Tsukamura, H. (2018). The roles of kisspeptin in the mechanism underlying reproductive functions in mammals. The Journal of Reproduction and Development, 64(6), 469–476.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Bhattacharya, M., & Babwah, A. V. (2015). Kisspeptin: beyond the brain. Endocrinology, 156(4), 1218–1227.

    CAS  PubMed  Google Scholar 

  7. Brommage, R., Liu, J., Hansen, G. M., Kirkpatrick, L. L., Potter, D. G., Sands, A. T., et al. (2014). High-throughput screening of mouse gene knockouts identifies established and novel skeletal phenotypes. Bone Res, 2, 14034.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Wolfe, A., & Hussain, M. A. (2018). The emerging role(s) for kisspeptin in metabolism in mammals. Front Endocrinol (Lausanne), 9(184), 184.

    Google Scholar 

  9. Dudek, M., Ziarniak, K., & Sliwowska, J. H. (2018). Kisspeptin and metabolism: the brain and beyond. Front Endocrinol (Lausanne), 9(145), 145.

    Google Scholar 

  10. Topaloglu, A. K., Tello, J. A., Kotan, L. D., Ozbek, M. N., Yilmaz, M. B., Erdogan, S., et al. (2012). Inactivating KISS1 mutation and hypogonadotropic hypogonadism. The New England Journal of Medicine, 366(7), 629–635.

    CAS  PubMed  Google Scholar 

  11. Tang, R., Ding, X., & Zhu, J. (2019). Kisspeptin and polycystic ovary syndrome. Front Endocrinol (Lausanne), 10, 298.

    Google Scholar 

  12. Witchel, S. F., & Tena-Sempere, M. (2013). The Kiss1 system and polycystic ovary syndrome: lessons from physiology and putative pathophysiologic implications. Fertility and Sterility, 100(1), 12–22.

    CAS  PubMed  Google Scholar 

  13. Hu, K. L., Zhao, H., Yu, Y., & Li, R. (2019). Kisspeptin as a potential biomarker throughout pregnancy. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 240, 261–266.

    CAS  PubMed  Google Scholar 

  14. Gottsch, M. L., Navarro, V. M., Zhao, Z., Glidewell-Kenney, C., Weiss, J., Jameson, J. L., et al. (2009). Regulation of kiss1 and dynorphin gene expression in the murine brain by classical and nonclassical estrogen receptor pathways. The Journal of Neuroscience, 29(29), 9390–9395.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, P., Tang, M., Zhong, T., Lin, Y., Zong, T., Zhong, C., et al. (2014). Expression and function of kisspeptin during mouse decidualization. PLoS One, 9(5), e97647.

    PubMed  PubMed Central  Google Scholar 

  16. Dahlman-Wright, K., Cavailles, V., Fuqua, S. A., Jordan, V. C., Katzenellenbogen, J. A., Korach, K. S., et al. (2006). International Union of Pharmacology. LXIV. Estrogen receptors. Pharmacological Reviews, 58(4), 773–781.

    CAS  PubMed  Google Scholar 

  17. Tomikawa, J., Uenoyama, Y., Ozawa, M., Fukanuma, T., Takase, K., Goto, T., et al. (2012). Epigenetic regulation of Kiss1 gene expression mediating estrogen-positive feedback action in the mouse brain. Proceedings of the National Academy of Sciences of the United States of America, 109(20), E1294–E1301.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Uenoyama, Y., Tomikawa, J., Inoue, N., Goto, T., Minabe, S., Ieda, N., et al. (2016). Molecular and epigenetic mechanism regulating hypothalamic Kiss1 gene expression in mammals. Neuroendocrinology, 103(6), 640–649.

    CAS  PubMed  Google Scholar 

  19. Beck, B. H., & Welch, D. R. (2010). The KISS1 metastasis suppressor: a good night kiss for disseminated cancer cells. European Journal of Cancer, 46(7), 1283–1289.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Harms, J. F., Welch, D. R., & Miele, M. E. (2003). KISS1 metastasis suppression and emergent pathways. Clinical & Experimental Metastasis, 20(1), 11–18.

    CAS  Google Scholar 

  21. Goldberg, S. F., Miele, M. E., Hatta, N., Takata, M., Paquette-Straub, C., Freedman, L. P., et al. (2003). Melanoma metastasis suppression by chromosome 6: evidence for a pathway regulated by CRSP3 and TXNIP. Cancer Research, 63(2), 432–440.

    CAS  PubMed  Google Scholar 

  22. Mitchell, D. C., Stafford, L. J., Li, D., Bar-Eli, M., & Liu, M. (2007). Transcriptional regulation of KiSS-1 gene expression in metastatic melanoma by specificity protein-1 and its coactivator DRIP-130. Oncogene, 26(12), 1739–1747.

    CAS  PubMed  Google Scholar 

  23. Mitchell, D. C., Abdelrahim, M., Weng, J. S., Stafford, L. J., Safe, S., Bar-Eli, M., et al. (2006). Regulation of KiSS-1 metastasis suppressor gene expression in breast cancer cells by direct interaction of transcription factors activator protein-2a and specificity protein-1. JBC, 281(1), 51–58.

    CAS  Google Scholar 

  24. Huijbregts, L., & de Roux, N. (2010). KISS1 is down-regulated by 17 beta-estradiol in MDA-MB-231 cells through a nonclassical mechanism and loss of ribonucleic acid polymerase II binding at the proximal promoter. Endocrinology, 151(8), 3764–3772.

    CAS  PubMed  Google Scholar 

  25. Teng, Y., Liu, M. Y., & Cowell, J. K. (2011). Functional interrelationship between the WASF3 and KISS1 metastasis-associated genes in breast cancer cells. International Journal of Cancer, 129(12), 2825–2835.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim, T. H., & Cho, S. G. (2017). Melatonin-induced KiSS1 expression inhibits triple-negative breast cancer cell invasiveness. Oncology Letters, 14(2), 2511–2516.

    PubMed  PubMed Central  Google Scholar 

  27. Mitra, A., Fillmore, R. A., Metge, B. J., Rajesh, M., Xi, Y., King, J., et al. (2008). Large isoform of MRJ (DNAJB6) reduces malignant activity of breast cancer. Breast Cancer Research, 10(2), R22.

    PubMed  Google Scholar 

  28. Dissanayake, S. K., Wade, M., Johnson, C. E., O'Connell, M. P., Leotlela, P. D., French, A. D., et al. (2007). The Wnt5A/protein kinase C pathway mediates motility in melanoma cells via the inhibition of metastasis suppressors and initiation of an epithelial to mesenchymal transition. Journal of Biological Chemistry, 282(23), 17259–17271.

    CAS  PubMed  Google Scholar 

  29. Deng, G., Zheng, X., Jiang, P., Chen, K., Wang, X., Jiang, K., et al. (2017). Notch1 suppresses prostate cancer cell invasion via the metastasis-associated 1-KiSS-1 metastasis-suppressor pathway. Oncology Letters, 14(4), 4477–4482.

    PubMed  PubMed Central  Google Scholar 

  30. Zhang, Y., Huang, Z., Zhu, Z., Zheng, X., Liu, J., Han, Z., et al. (2014). Upregulated UHRF1 promotes bladder cancer cell invasion by epigenetic silencing of KiSS1. PLoS One, 9(10), e104252.

    PubMed  PubMed Central  Google Scholar 

  31. Shen, Z. L., Wang, B., Jiang, K. W., Ye, C. X., Cheng, C., Yan, Y. C., et al. (2016). Downregulation of miR-199b is associated with distant metastasis in colorectal cancer via activation of SIRT1 and inhibition of CREB/KISS1 signaling. Oncotarget, 7(23), 35092–35105.

    PubMed  PubMed Central  Google Scholar 

  32. Liu, G., Zhao, X., Zhou, J., Cheng, X., Ye, Z., & Ji, Z. (2018). LncRNA TP73-AS1 promotes cell proliferation and inhibits cell apoptosis in clear cell renal cell carcinoma through repressing KISS1 expression and inactivation of PI3K/Akt/mTOR signaling pathway. Cellular Physiology and Biochemistry, 48(1), 371–384.

    CAS  PubMed  Google Scholar 

  33. Liu, C., Wang, L., Li, Y. W., Cui, Y. S., Wang, Y. Q., & Liu, S. (2019). Long noncoding RNA LUCAT1 promotes migration and invasion of prostate cancer cells by inhibiting KISS1 expression. European Review for Medical and Pharmacological Sciences, 23(8), 3277–3283.

    CAS  PubMed  Google Scholar 

  34. Qiu, J.J., Lin, X.J., Tang, X.Y., Zheng, T.T., Zhang, X.Y., & Hua, K.Q. (2019). Long noncoding RNA TC0101441 induces epithelial-mesenchymal transition in epithelial ovarian cancer metastasis by downregulating KiSS1. International Journal of Cancer, 0(ja). https://doi.org/10.1002/ijc.32692.

  35. Zhang, Y. X., Cui, H. X., Liu, L., & Yi, G. K. (2019). Long non-coding RNA MNX1-AS1 promoted osteosarcoma proliferation and invasion via inhibiting KISS1. European Review for Medical and Pharmacological Sciences, 23(14), 6045–6052.

    PubMed  Google Scholar 

  36. Kaverina, N., Borovjagin, A. V., Kadagidze, Z., Baryshnikov, A., Baryshnikova, M., Malin, D., et al. (2017). Astrocytes promote progression of breast cancer metastases to the brain via a KISS1-mediated autophagy. Autophagy, 13(11), 1905–1923.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Harihar, S., Pounds, K. M., Iwakuma, T., Seidah, N. G., & Welch, D. R. (2014). Furin is the major proprotein convertase required for KISS1-to-Kisspeptin processing. PLoS One, 9(1), e84958.

    PubMed  PubMed Central  Google Scholar 

  38. Thomas, G. (2002). Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nature Reviews. Molecular Cell Biology, 3(10), 753–766.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Findeisen, M., Rathmann, D., & Beck-Sickinger, A. G. (2011). RFamide peptides: structure, function, mechanisms and pharmaceutical potential. Pharmaceuticals, 4(9), 1248–1280.

    CAS  PubMed Central  Google Scholar 

  40. Takino, T., Koshikawa, N., Miyamori, H., Tanaka, M., Sasaki, T., Okada, Y., et al. (2003). Cleavage of metastasis suppressor gene product KiSS-1 protein/metastin by matrix metalloproteinases. Oncogene, 22(30), 4617–4626.

    CAS  PubMed  Google Scholar 

  41. Milton, N. G. (2012). in vitro activities of Kissorphin, a novel hexapeptide KiSS-1 derivative, in neuronal cells. Journal of Amino Acids, 2012, 691463.

    PubMed  PubMed Central  Google Scholar 

  42. Milton, N. G., Chilumuri, A., Rocha-Ferreira, E., Nercessian, A. N., & Ashioti, M. (2012). Kisspeptin prevention of amyloid-beta peptide neurotoxicity in vitro. ACS Chemical Neuroscience, 3(9), 706–719.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Gibula-Bruzda, E., Marszalek-Grabska, M., Gawel, K., Trzcinska, R., Silberring, J., & Kotlinska, J. H. (2017). The new kisspeptin derivative - kissorphin (KSO) - attenuates acute hyperlocomotion and sensitization induced by ethanol and morphine in mice. Alcohol, 64, 45–53.

    CAS  PubMed  Google Scholar 

  44. Gibula-Tarlowska, E., Kedzierska, E., Piechura, K., Silberring, J., & Kotlinska, J. H. (2019). The influence of a new derivate of kisspeptin-10 - kissorphin (KSO) on the rewarding effects of morphine in the conditioned place preference (CPP) test in male rats. Behavioural Brain Research, 372, 112043.

    CAS  PubMed  Google Scholar 

  45. Gibula-Tarlowska, E., Grochecki, P., Silberring, J., & Kotlinska, J. H. (2019). The kisspeptin derivative kissorphin reduces the acquisition, expression, and reinstatement of ethanol-induced conditioned place preference in rats. Alcohol, 81, 11–19.

    CAS  PubMed  Google Scholar 

  46. Yan, C., Su, H., Song, X., Cao, H., Kong, L., & Cui, W. (2018). Smad ubiquitination regulatory factor 1 (Smurf1) promotes thyroid cancer cell proliferation and migration via ubiquitin-dependent degradation of Kisspeptin-1. Cellular Physiology and Biochemistry, 49(5), 2047–2059.

    CAS  PubMed  Google Scholar 

  47. Brill, L. M., Salomon, A. R., Ficarro, S. B., Mukherji, M., Stettler-Gill, M., & Peters, E. C. (2004). Robust phosphoproteomic profiling of tyrosine phosphorylation sites from human T cells using immobilized metal affinity chromatography and tandem mass spectrometry. Analytical Chemistry, 76(10), 2763–2772.

    CAS  PubMed  Google Scholar 

  48. Lee, D. K., Nguyen, T., O'Neill, G. P., Cheng, R., Liu, Y., Howard, A. D., et al. (1999). Discovery of a receptor related to the galanin receptors. FEBS Letters, 446(1), 103–107.

    CAS  PubMed  Google Scholar 

  49. Wettschureck, N., & Offermanns, S. (2005). Mammalian G proteins and their cell type specific functions. Physiological Reviews, 85(4), 1159–1204.

    CAS  PubMed  Google Scholar 

  50. Wacker, J. L., Feller, D. B., Tang, X. B., Defino, M. C., Namkung, Y., Lyssand, J. S., et al. (2008). Disease-causing mutation in GPR54 reveals the importance of the second intracellular loop for class A G-protein-coupled receptor function. The Journal of Biological Chemistry, 283(45), 31068–31078.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Tian, J., Al-Odaini, A. A., Wang, Y., Korah, J., Dai, M., Xiao, L., et al. (2018). KiSS1 gene as a novel mediator of TGFbeta-mediated cell invasion in triple negative breast cancer. Cellular Signalling, 42, 1–10.

    CAS  PubMed  Google Scholar 

  52. Francis, V. A., Abera, A. B., Matjila, M., Millar, R. P., & Katz, A. A. (2014). Kisspeptin regulation of genes involved in cell invasion and angiogenesis in first trimester human trophoblast cells. PLoS One, 9(6), e99680.

    PubMed  PubMed Central  Google Scholar 

  53. Zhang, Y., Tang, Y. J., Li, Z. H., Pan, F., Huang, K., & Xu, G. H. (2013). KiSS1 inhibits growth and invasion of osteosarcoma cells through inhibition of the MAPK pathway. European Journal of Histochemistry, 57(4), 199–204.

    Google Scholar 

  54. Noonan, M. M., Dragan, M., Mehta, M. M., Hess, D. A., Brackstone, M., Tuck, A. B., et al. (2018). The matrix protein Fibulin-3 promotes KISS1R induced triple negative breast cancer cell invasion. Oncotarget, 9(53), 30034–30052.

    PubMed  PubMed Central  Google Scholar 

  55. Cho, S. G., Li, D. L., Stafford, L. J., Luo, J., Rodriguez-Villanueva, M., Wang, Y., et al. (2009). KiSS1 suppresses TNFa-induced breast cancer cell invasion via an inhibition of RhoA-mediated NFkB activation. Journal of Cellular Biochemistry, 107(6), 1139–1149.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Cho, S. G., Yi, Z., Pang, X., Yi, T., Wang, Y., Luo, J., et al. (2009). Kisspeptin-10, a KISS1-derived decapeptide, inhibits tumor angiogenesis by suppressing Sp1-mediated VEGF expression and FAK/Rho GTPase activation. Cancer Research, 69(17), 7062–7070.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Zajac, M., Law, J., Cvetkovic, D. D., Pampillo, M., McColl, L., Pape, C., et al. (2011). GPR54 (KISS1R) transactivates EGFR to promote breast cancer cell invasiveness. PLoS One, 6(6), e21599.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Pampillo, M., Camuso, N., Taylor, J. E., Szereszewski, J. M., Ahow, M. R., Zajac, M., et al. (2009). Regulation of GPR54 signaling by GRK2 and {beta}-arrestin. Molecular Endocrinology, 23(12), 2060–2074.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Olbrich, T., Ziegler, E., Turk, G., Schubert, A., Emons, G., & Grundker, C. (2010). Kisspeptin-10 inhibits bone-directed migration of GPR54-positive breast cancer cells: evidence for a dose-window effect. Gynecologic Oncology, 119(3), 571–578.

    CAS  PubMed  Google Scholar 

  60. Navenot, J. M., Wang, Z., Chopin, M., Fujii, N., & Peiper, S. C. (2005). Kisspeptin-10-induced signaling of GPR54 negatively regulates chemotactic responses mediated by CXCR4: a potential mechanism for the metastasis suppressor activity of kisspeptins. Cancer Research, 65(22), 10450–10456.

    CAS  PubMed  Google Scholar 

  61. Schmidt, E., Haase, M., Ziegler, E., Emons, G., & Grundker, C. (2014). Kisspeptin-10 inhibits stromal-derived factor 1-induced invasion of human endometrial cancer cells. International Journal of Gynecological Cancer, 24(2), 210–217.

    PubMed  Google Scholar 

  62. Chen, S., Chen, W., Zhang, X., Lin, S., & Chen, Z. (2016). Overexpression of KiSS-1 reduces colorectal cancer cell invasion by downregulating MMP-9 via blocking PI3K/Akt/NF-kappaB signal pathway. International Journal of Oncology, 48(4), 1391–1398.

    CAS  PubMed  Google Scholar 

  63. Bilban, M., Ghaffari-Tabrizi, N., Hintermann, E., Bauer, S., Molzer, S., Zoratti, C., et al. (2004). Kisspeptin-10, a KiSS-1/metastin-derived decapeptide, is a physiological invasion inhibitor of primary human trophoblasts. Journal of Cell Science, 117(8), 1319–1328.

    CAS  PubMed  Google Scholar 

  64. Tian, J., Al-Odaini, A. A., Wang, Y., Korah, J., Dai, M., Xiao, L., et al. (2017). KiSS1 gene as a novel mediator of TGFbeta-mediated cell invasion in triple negative breast cancer. Cellular Signalling, 42, 1–10.

    PubMed  Google Scholar 

  65. Becker, J. A., Mirjolet, J. F., Bernard, J., Burgeon, E., Simons, M. J., Vassart, G., et al. (2005). Activation of GPR54 promotes cell cycle arrest and apoptosis of human tumor cells through a specific transcriptional program not shared by other G(q)-coupled receptors. BBRC, 326(3), 677–686.

    CAS  PubMed  Google Scholar 

  66. Yin, Y., Tang, L., & Shi, L. (2017). The metastasis suppressor gene KISS-1 regulates osteosarcoma apoptosis and autophagy processes. Molecular Medicine Reports, 15(3), 1286–1290.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Ulasov, I. V., Borovjagin, A. V., Timashev, P., Cristofanili, M., & Welch, D. R. (2019). KISS1 in breast cancer progression and autophagy. Cancer Metastasis Reviews, 38(3), 493–506.

    PubMed  PubMed Central  Google Scholar 

  68. Ramaesh, T., Logie, J. J., Roseweir, A. K., Millar, R. P., Walker, B. R., Hadoke, P. W., et al. (2010). Kisspeptin-10 inhibits angiogenesis in human placental vessels ex vivo and endothelial cells in vitro. Endocrinology, 151(12), 5927–5934.

    CAS  PubMed  Google Scholar 

  69. Yan, C. H., Wang, H., & Boyd, D. D. (2001). KiSS-1 represses 92-kDa type IV collagenase expression by down- regulating NFkB binding to the promoter as a consequence of IkBa-induced block of p65/p50 nuclear translocation. The Journal of Biological Chemistry, 276(2), 1164–1172.

    CAS  PubMed  Google Scholar 

  70. Liu, W., Beck, B. H., Vaidya, K. S., Nash, K. T., Feeley, K. P., Ballinger, S. W., et al. (2014). Metastasis suppressor KISS1 seems to reverse the Warburg effect by enhancing mitochondrial biogenesis. Cancer Research, 74(3), 954–963.

    CAS  PubMed  Google Scholar 

  71. Manley, S. J., Liu, W., & Welch, D. R. (2017). The KISS1 metastasis suppressor appears to reverse the Warburg effect by shifting from glycolysis to mitochondrial beta-oxidation. Journal of Molecular Medicine (Berlin, Germany), 95(9), 951–963.

    CAS  Google Scholar 

  72. Jiang, Y., Berk, M., Singh, L. S., Tan, H., Yin, L., Powell, C. T., et al. (2005). KiSS1 suppresses metastasis in human ovarian cancer via inhibition of protein kinase C alpha. Clinical & Experimental Metastasis, 22(5), 369–376.

    CAS  Google Scholar 

  73. Uenoyama, Y., Pheng, V., Tsukamura, H., & Maeda, K. I. (2016). The roles of kisspeptin revisited: inside and outside the hypothalamus. The Journal of Reproduction and Development, 62(6), 537–545.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Oakley, A. E., Clifton, D. K., & Steiner, R. A. (2009). Kisspeptin signaling in the brain. Endocrine Reviews, 30(6), 713–743.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Lapatto, R., Pallais, J. C., Zhang, D., Chan, Y. M., Mahan, A., Cerrato, F., et al. (2007). Kiss1-/- mice exhibit more variable hypogonadism than Gpr54-/- mice. Endocrinology, 148(10), 4927–4936.

    CAS  PubMed  Google Scholar 

  76. Seminara, S. B., Messager, S., Chatzidaki, E. E., Thresher, R. R., Acierno, J. S., Shagoury, J. K., et al. (2003). The GPR54 gene as a regulator of puberty. New England Journal of Medicine, 349(17), 1614–U1618.

    CAS  PubMed  Google Scholar 

  77. Chan, Y. M., Broder-Fingert, S., Wong, K. M., & Seminara, S. B. (2009). Kisspeptin/Gpr54-independent gonadotrophin-releasing hormone activity in Kiss1 and Gpr54 mutant mice. Journal of Neuroendocrinology, 21(12), 1015–1023.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Tenenbaum-Rakover, Y., Commenges-Ducos, M., Iovane, A., Aumas, C., Admoni, O., & de Roux, N. (2007). Neuroendocrine phenotype analysis in five patients with isolated hypogonadotropic hypogonadism due to a L102P inactivating mutation of GPR54. The Journal of Clinical Endocrinology and Metabolism, 92(3), 1137–1144.

    CAS  PubMed  Google Scholar 

  79. Silveira, L. G., Noel, S. D., Silveira-Neto, A. P., Abreu, A. P., Brito, V. N., Santos, M. G., et al. (2010). Mutations of the KISS1 gene in disorders of puberty. The Journal of Clinical Endocrinology and Metabolism, 95(5), 2276–2280.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Silveira, L. F., Santos, M. A., Brito, V. N., Silveira-Neto, A. P., Mendonca, B. B., & Latronico, A. C. (2008). Two KISS1 mutations associated with gonadotropin-dependent precocious puberty. Hormone Research, 70, 20–20.

    Google Scholar 

  81. Semple, R. K., Achermann, J. C., Ellery, J., Farooqi, I. S., Karet, F. E., Stanhope, R. G., et al. (2004). Two novel missense mutations in GPR54 in a patient with hypogonadotropic hypogonadism. The Journal of Clinical Endocrinology and Metabolism, 90(3), 1849–1855.

    PubMed  Google Scholar 

  82. Pallais, J. C., Bo-Abbas, Y., Pitteloud, N., Crowley Jr., W. F., & Seminara, S. B. (2006). Neuroendocrine, gonadal, placental, and obstetric phenotypes in patients with IHH and mutations in the G-protein coupled receptor, GPR54. Molecular and Cellular Endocrinology, 254-255, 70–77.

    CAS  PubMed  Google Scholar 

  83. Nimri, R., Lebenthal, Y., Lazar, L., Chevrier, L., Phillip, M., Bar, M., et al. (2011). A novel loss-of-function mutation in GPR54/KISS1R leads to hypogonadotropic hypogonadism in a highly consanguineous family. The Journal of Clinical Endocrinology and Metabolism, 96(3), E536–E545.

    CAS  PubMed  Google Scholar 

  84. Pasquier, J., Kamech, N., Lafont, A.G., Vaudry, H., Rousseau, K., & Dufour, S. (2014). Molecular evolution and structure-activity relationships of kisspeptins and their receptors. Journal of Molecular Endocrinology, 52, T101–117.

  85. Kanda, S., & Oka, Y. (2013). Structure, synthesis, and phylogeny of kisspeptin and its receptor. Advances in Experimental Medicine and Biology, 784, 9–26.

    CAS  PubMed  Google Scholar 

  86. Pasquier, J., Kamech, N., Lafont, A. G., Vaudry, H., Rousseau, K., & Dufour, S. (2014). Molecular evolution of GPCRs: kisspeptin/kisspeptin receptors. Journal of Molecular Endocrinology, 52(3), T101–T117.

    CAS  PubMed  Google Scholar 

  87. Osugi, T., Ohtaki, N., Sunakawa, Y., Son, Y. L., Ohkubo, M., Iigo, M., et al. (2013). Molecular evolution of kiss2 genes and peptides in vertebrates. Endocrinology, 154(11), 4270–4280.

    CAS  PubMed  Google Scholar 

  88. Mechaly, A. S., Vinas, J., & Piferrer, F. (2009). Identification of two isoforms of the Kisspeptin-1 receptor (kiss1r) generated by alternative splicing in a modern teleost, the Senegalese sole (Solea senegalensis). Biology of Reproduction, 80(1), 60–69.

    CAS  PubMed  Google Scholar 

  89. Oishi, S., Misu, R., Tomita, K., Setsuda, S., Masuda, R., Ohno, H., et al. (2011). Activation of neuropeptide FF receptors by kisspeptin receptor ligands. ACS Medicinal Chemistry Letters, 2(1), 53–57.

    CAS  PubMed  Google Scholar 

  90. Lyubimov, Y., Engstrom, M., Wurster, S., Savola, J. M., Korpi, E. R., & Panula, P. (2010). Human kisspeptins activate neuropeptide FF2 receptor. Neuroscience, 170(1), 117–122.

    CAS  PubMed  Google Scholar 

  91. Yun, S., Kim, D. K., Furlong, M., Hwang, J. I., Vaudry, H., & Seong, J. Y. (2014). Does Kisspeptin belong to the proposed RF-amide peptide family? Frontiers in Endocrinology (Lausanne), 5, 134.

    Google Scholar 

  92. Song, W. J., Mondal, P., Wolfe, A., Alonso, L. C., Stamateris, R., Ong, B. W., et al. (2014). Glucagon regulates hepatic kisspeptin to impair insulin secretion. Cell Metabolism, 19(4), 667–681.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Izzi-Engbeaya, C., Comninos, A. N., Clarke, S. A., Jomard, A., Yang, L., Jones, S., et al. (2018). The effects of kisspeptin on beta-cell function, serum metabolites and appetite in humans. Diabetes, Obesity and Metabolism, 20(12), 2800–2810.

    CAS  PubMed  Google Scholar 

  94. Babwah, A. V. (2015). Uterine and placental KISS1 regulate pregnancy: what we know and the challenges that lie ahead. Reproduction, 150(4), R121–R128.

    PubMed  Google Scholar 

  95. Millar, R. P., & Babwah, A. V. (2015). KISS1R: hallmarks of an effective regulator of the neuroendocrine axis. Neuroendocrinology, 101(3), 193–210.

    CAS  PubMed  Google Scholar 

  96. Smit, M. J., Vischer, H. F., Bakker, R. A., Jongejan, A., Timmerman, H., Pardo, L., et al. (2007). Pharmacogenomic and structural analysis of constitutive g protein-coupled receptor activity. Annual Review of Pharmacology and Toxicology, 47, 53–87.

    CAS  PubMed  Google Scholar 

  97. Goertzen, C. G., Dragan, M., Turley, E., Babwah, A. V., & Bhattacharya, M. (2016). KISS1R signaling promotes invadopodia formation in human breast cancer cell via beta-arrestin2/ERK. Cellular Signalling, 28(3), 165–176.

    CAS  PubMed  Google Scholar 

  98. Cho, S. G., Wang, Y., Rodriguez, M., Tan, K., Zhang, W., Luo, J., et al. (2011). Haploinsufficiency in the prometastasis Kiss1 receptor Gpr54 delays breast tumor initiation, progression, and lung metastasis. Cancer Research, 71(20), 6535–6546.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Liu, X., & Herbison, A. (2015). Kisspeptin regulation of arcuate neuron excitability in kisspeptin receptor knockout mice. Endocrinology, 156(5), 1815–1827.

    CAS  PubMed  Google Scholar 

  100. Chilumuri, A., & Milton, N. G. (2013). The role of neurotransmitters in protection against amyloid- beta toxicity by KiSS-1 overexpression in SH-SY5Y neurons. ISRN Neuroscience, 2013, 253210.

    PubMed  PubMed Central  Google Scholar 

  101. Cebrian, V., Fierro, M., Orenes-Pinero, E., Grau, L., Moya, P., Ecke, T., et al. (2011). KISS1 methylation and expression as tumor stratification biomarkers and clinical outcome prognosticators for bladder cancer patients. American Journal of Pathology, 179(2), 540–546.

    CAS  PubMed  Google Scholar 

  102. Sanchez-Carbayo, M., Capodieci, P., & Cordon-Cardo, C. (2003). Tumor suppressor role of KiSS-1 in bladder cancer – Loss of KiSS-1 expression is associated with bladder cancer progression and clinical outcome. AJP, 162(2), 609–617.

    CAS  PubMed  Google Scholar 

  103. Stark, A. M., Tongers, K., Maass, N., Mehdorn, H. M., & Held-Feindt, J. (2005). Reduced metastasis-suppressor gene mRNA-expression in breast cancer brain metastases. Journal of Cancer Research and Clinical Oncology, 131(3), 191–198.

    CAS  PubMed  Google Scholar 

  104. Mooez, S., Malik, F. A., Kayani, M. A., Rashid, R., Zahid, A., & Khan, A. (2011). Expressional alterations and transcript isoforms of metastasis suppressor genes (KAI1 and KiSS1) in breast cancer patients. Asian Pacific Journal of Cancer Prevention, 12(10), 2785–2791.

    CAS  PubMed  Google Scholar 

  105. Kostadima, L., Pentheroudakis, G., & Pavlidis, N. (2007). The missing kiss of life: transcriptional activity of the metastasis suppressor gene KiSS1 in early breast cancer. Anticancer Research, 27(4B), 2499–2504.

    CAS  PubMed  Google Scholar 

  106. Ulasov, I. V., Kaverina, N. V., Pytel, P., Thaci, B., Liu, F., Hurst, D. R., et al. (2012). Clinical significance of KISS1 protein expression for brain invasion and metastasis. Cancer, 118(8), 2096–2105.

    CAS  PubMed  Google Scholar 

  107. Xie, F., Yang, H., Wang, S., Zhou, B., Tong, F., Yang, D., et al. (2012). A logistic regression model for predicting axillary lymph node metastases in early breast carcinoma patients. Sensors (Basel), 12(7), 9936–9950.

    CAS  Google Scholar 

  108. Chen, S. Q., Chen, Z. H., Lin, S. Y., Dai, Q. B., Fu, L. X., & Chen, R. Q. (2014). KISS1 methylation and expression as predictors of disease progression in colorectal cancer patients. World Journal of Gastroenterology, 20(29), 10071–10081.

    PubMed  PubMed Central  Google Scholar 

  109. Wang, X. Q., Fang, P. F., Zhang, C., Xu, Y. Y., Song, X. B., Liang, J., et al. (2019). Low KISS1 expression predicts poor prognosis for patients with colorectal cancer: a meta-analysis. Clinical and Experimental Pharmacology & Physiology, 46(7), 625–634.

    CAS  Google Scholar 

  110. Huo, X., Zhang, L., & Li, T. (2018). Analysis of the association of the expression of KiSS-1 in colorectal cancer tissues with the pathology and prognosis. Oncology Letters, 15(3), 3056–3060.

    PubMed  Google Scholar 

  111. Jiang, T., Zhang, S. L., Lin, B., Meng, L. R., & Gao, H. (2005). Expression and clinical significance of KISS-1 and GPR54 mRNA in endometrial carcinoma. Zhonghua Zhong Liu Za Zhi, 27(4), 229–231.

    CAS  PubMed  Google Scholar 

  112. Ikeguchi, M., Yamaguchi, K., & Kaibara, N. (2004). Clinical significance of the loss of KiSS-1 and orphan G-protein-coupled receptor (hOT7T175) gene expression in esophageal squamous cell carcinoma. Clinical Cancer Research, 10(4), 1379–1383.

    CAS  PubMed  Google Scholar 

  113. Guan-Zhen, Y., Ying, C., Can-Rong, N., Guo-Dong, W., Jian-Xin, Q., & Jie-Jun, W. (2007). Reduced protein expression of metastasis-related genes (nm23, KISS1, KAI1 and p53) in lymph node and liver metastases of gastric cancer. International Journal of Experimental Pathology, 88(3), 175–183.

    PubMed  PubMed Central  Google Scholar 

  114. Dhar, D. K., Naora, H., Kubota, H., Maruyama, R., Yoshimura, H., Tonomoto, Y., et al. (2004). Downregulation of KiSS-1 expression is responsible for tumor invasion and worse prognosis in gastric carcinoma. International Journal of Cancer, 111(6), 868–872.

    CAS  PubMed  Google Scholar 

  115. Shengbing, Z., Feng, L. J., Bin, W., Lingyun, G., & Aimin, H. (2009). Expression of KiSS-1 gene and its role in invasion and metastasis of human hepatocellular carcinoma. Anat Rec (Hoboken), 292(8), 1128–1134.

    Google Scholar 

  116. Hou, Y. K., Wang, Y., Cong, W. M., & Wu, M. C. (2007). [Expression of tumor metastasis-suppressor gene KiSS-1 and matrix metalloproteinase-9 in portal vein tumor thrombus of hepatocellular carcinoma]. Ai Zheng. Aizheng. Chinese Journal of Cancer, 26(6), 591–595.

    CAS  PubMed  Google Scholar 

  117. Song, W. W., Gui, A. P., Li, W., Chen, H. S., & Li, J. M. (2017). Expressions of HIF-1alpha and KISS-1 in patients with liver cancer and correlation analysis. European Review for Medical and Pharmacological Sciences, 21(18), 4058–4063.

    PubMed  Google Scholar 

  118. Zheng, S., Chang, Y., Hodges, K. B., Sun, Y., Ma, X., Xue, Y., et al. (2010). Expression of KISS1 and MMP-9 in non-small cell lung cancer and their relations to metastasis and survival. Anticancer Research, 30(3), 713–718.

    PubMed  Google Scholar 

  119. Sun, Y. B., & Xu, S. (2013). Expression of KISS1 and KISS1R (GPR54) may be used as favorable prognostic markers for patients with non-small cell lung cancer. International Journal of Oncology, 43(2), 521–530.

    CAS  PubMed  Google Scholar 

  120. Shirasaki, F., Takata, M., Hatta, N., & Takehara, K. (2001). Loss of expression of the metastasis suppressor gene KiSS1 during melanoma progression and its association with LOH of chromosome 6q16.3-q23. Cancer Research, 61(20), 7422–7425.

    CAS  PubMed  Google Scholar 

  121. Prentice, L. M., Klausen, C., Kalloger, S., Kobel, M., McKinney, S., Santos, J. L., et al. (2007). Kisspeptin and GPR54 immunoreactivity in a cohort of 518 patients defines favourable prognosis and clear cell subtype in ovarian carcinoma. BMC Medicine, 5, 33.

    PubMed  PubMed Central  Google Scholar 

  122. Hata, K., Dhar, D. K., Watanabe, Y., Nakai, H., & Hoshiai, H. (2007). Expression of metastin and a G-protein-coupled receptor (AXOR12) in epithelial ovarian cancer. European Journal of Cancer, 43(9), 1452–1459.

    CAS  PubMed  Google Scholar 

  123. Yu, L., Zhu, B., Wu, S., Zhou, L., Song, W., Gong, X., et al. (2017). Evaluation of the correlation of vasculogenic mimicry, ALDH1, KiSS-1, and MACC1 in the prediction of metastasis and prognosis in ovarian carcinoma. Diagnostic Pathology, 12(1), 23.

    PubMed  PubMed Central  Google Scholar 

  124. Masui, T., Doi, R., Mori, T., Toyoda, E., Koizumi, M., Kami, K., et al. (2004). Metastin and its variant forms suppress migration of pancreatic cancer cells. Biochemical and Biophysical Research Communications, 315(1), 85–92.

    CAS  PubMed  Google Scholar 

  125. Nagai, K., Doi, R., Katagiri, F., Ito, T., Kida, A., Koizumi, M., et al. (2009). Prognostic value of metastin expression in human pancreatic cancer. Journal of Experimental & Clinical Cancer Research, 28, 9.

    Google Scholar 

  126. Marot, D., Bieche, I., Aumas, C., Esselin, S., Bouquet, C., Vacher, S., et al. (2007). High tumoral levels of Kiss1 and G-protein-coupled receptor 54 expression are correlated with poor prognosis of estrogen receptor-positive breast tumors. Endocrine-Related Cancer, 14(3), 691–702.

    CAS  PubMed  Google Scholar 

  127. Martin, T. A., Watkins, G., & Jiang, W. G. (2005). KiSS-1 expression in human breast cancer. Clinical & Experimental Metastasis, 22(6), 503–511.

    CAS  Google Scholar 

  128. Ikeguchi, M., Hirooka, Y., & Kaibara, N. (2003). Quantitative reverse transcriptase polymerase chain reaction analysis for KiSS-1 and orphan G-protein-coupled receptor (hOT7T175) gene expression in hepatocellular carcinoma. Journal of Cancer Research and Clinical Oncology, 129(9), 531–535.

    CAS  PubMed  Google Scholar 

  129. Schmid, K., Wang, X., Haitel, A., Sieghart, W., Peck-Radosavljevic, M., Bodingbauer, M., et al. (2007). KiSS-1 overexpression as an independent prognostic marker in hepatocellular carcinoma: an immunohistochemical study. Virchows Archiv, 450(2), 143–149.

    CAS  PubMed  Google Scholar 

  130. Chen, H., Chen, P. S., Lin, F. F., Chen, S. Y., & Lin, J. H. (2019). KISS1 protein expression is associated with worse prognosis in osteosarcoma patients: a long-term follow-up study. Translational Cancer Research, 8(5), 1756–1762.

    CAS  Google Scholar 

  131. Ringel, M. D., Hardy, E., Bernet, V. J., Burch, H. B., Schuppert, F., Burman, K. D., et al. (2002). Metastin receptor is overexpressed in papillary thyroid cancer and activates MAP kinase in thyroid cancer cells. Journal of Clinical Endocrinology and Metabolism, 87(5), 2399–2402.

    CAS  PubMed  Google Scholar 

  132. Karapanagiotou, E. M., Dilana, K. D., Gkiozos, I., Gratsias, I., Tsimpoukis, S., Polyzos, A., et al. (2011). Metastin is not involved in metastatic potential of non-small cell lung cancer. Medical Oncology, 28(2), 559–564.

    CAS  PubMed  Google Scholar 

  133. Ziegler, E., Olbrich, T., Emons, G., & Grundker, C. (2013). Antiproliferative effects of kisspeptin10 depend on artificial GPR54 (KISS1R) expression levels. Oncology Reports, 29(2), 549–554.

    CAS  PubMed  Google Scholar 

  134. Tan, K., Cho, S. G., Luo, W., Yi, T., Wu, X., Siwko, S., et al. (2014). KiSS1-induced GPR54 signaling inhibits breast cancer cell migration and epithelial-mesenchymal transition via protein kinase D1. Current Molecular Medicine, 14(5), 652–662.

    CAS  PubMed  Google Scholar 

  135. Cvetkovic, D., Babwah, A. V., & Bhattacharya, M. (2013). Kisspeptin/KISS1R system in breast cancer. Journal of Cancer, 4(8), 653–661.

    PubMed  PubMed Central  Google Scholar 

  136. Guzman, S., Brackstone, M., Wondisford, F., Babwah, A. V., & Bhattacharya, M. (2019). KISS1/KISS1R and breast cancer: metastasis promoter. Seminars in Reproductive Medicine, 37(4), 197–206.

    CAS  PubMed  Google Scholar 

  137. Cho, S. G., Li, D., Tan, K., Siwko, S. K., & Liu, M. (2012). KiSS1 and its G-protein-coupled receptor GPR54 in cancer development and metastasis. Cancer Metastasis Reviews, 31(3-4), 585–591.

    CAS  PubMed  Google Scholar 

  138. Arab, K., Smith, L. T., Gast, A., Weichenhan, D., Huang, J. P., Claus, R., et al. (2011). Epigenetic deregulation of TCF21 inhibits metastasis suppressor KISS1 in metastatic melanoma. Carcinogenesis, 32(10), 1467–1473.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Mousavi Ardehaie, R., Hashemzadeh, S., Behrouz Sharif, S., Ghojazadeh, M., Teimoori-Toolabi, L., & Sakhinia, E. (2017). Aberrant methylated EDNRB can act as a potential diagnostic biomarker in sporadic colorectal cancer while KISS1 is controversial. Bioengineered, 8(5), 555–564.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Mardin, W. A., Haier, J., & Mees, S. T. (2013). Epigenetic regulation and role of metastasis suppressor genes in pancreatic ductal adenocarcinoma. BMC Cancer, 13, 264.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Hurst, D. R., & Welch, D. R. (2011). Metastasis suppressor genes at the interface between the environment and tumor cell growth. International Review of Cell and Molecular Biology, 286, 107–180.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Quevedo, E. G., Aguilar, G. M., Aguilar, L. A., Rubio, S. A., Martinez, S. E., Rodriguez, I. P., et al. (2015). Polymorphisms rs12998 and rs5780218 in KiSS1 suppressor metastasis gene in Mexican patients with breast cancer. Disease Markers, 2015, 365845.

    PubMed  Google Scholar 

  143. Dova, L., Golfinopoulos, V., Pentheroudakis, G., Georgiou, I., & Pavlidis, N. (2008). Systemic dissemination in cancer of unknown primary is independent of mutational inactivation of the KiSS-1 metastasis-suppressor gene. Pathology Oncology Research, 14(3), 239–241.

    CAS  PubMed  Google Scholar 

  144. Pentheroudakis, G., Kostadima, L., Dova, L., Georgiou, I., Tzavaras, T., Vartholomatos, G., et al. (2010). A twisted kiss: in vitro and in vivo evidence of genetic variation and suppressed transcription of the metastasis-suppressor gene KiSS1 in early breast cancer. Neoplasma, 57(1), 47–54.

    CAS  PubMed  Google Scholar 

  145. Pare-Brunet, L., Sebio, A., Salazar, J., Berenguer-Llergo, A., Rio, E., Barnadas, A., et al. (2015). Genetic variations in the VEGF pathway as prognostic factors in metastatic colorectal cancer patients treated with oxaliplatin-based chemotherapy. The Pharmacogenomics Journal, 15(5), 397–404.

    CAS  PubMed  Google Scholar 

  146. Kim, K., Marquez-Palencia, M., & Malladi, S. (2019). Metastatic latency, a veiled threat. Frontiers in Immunology, 10, 1836.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Recasens, A., & Munoz, L. (2019). Targeting cancer cell dormancy. Trends in Pharmacological Sciences, 40(2), 128–141.

    CAS  PubMed  Google Scholar 

  148. Klein, C. A. (2013). Selection and adaptation during metastatic cancer progression. Nature, 501(7467), 365–372.

    CAS  PubMed  Google Scholar 

  149. Werner-Klein, M., & Klein, C. A. (2019). Therapy resistance beyond cellular dormancy. Nature Cell Biology, 21(2), 117–119.

    CAS  PubMed  Google Scholar 

  150. Polzer, B., & Klein, C. A. (2013). Metastasis awakening: the challenges of targeting minimal residual cancer. Nature Medicine, 19(3), 274–275.

    CAS  PubMed  Google Scholar 

  151. Sosa, M. S., Bragado, P., & Aguirre-Ghiso, J. A. (2014). Mechanisms of disseminated cancer cell dormancy: an awakening field. Nature Reviews. Cancer, 14(9), 611–622.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Aguirre-Ghiso, J. A. (2007). Models, mechanisms and clinical evidence for cancer dormancy. Nature Reviews. Cancer, 7(11), 834–846.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. McNally, L. R., Welch, D. R., Beck, B. H., Stafford, L. J., Long, J. W., Sellers, J. C., et al. (2010). KISS1 over-expression suppresses metastasis of pancreatic adenocarcinoma in a xenograft mouse model. Clinical & Experimental Metastasis, 27(8), 591–600.

    CAS  Google Scholar 

  154. Nash, K. T., Phadke, P. A., Navenot, J.-M., Hurst, D. R., Accavitti-Loper, M. A., Sztul, E., et al. (2007). KISS1 metastasis suppressor secretion, multiple organ metastasis suppression, and maintenance of tumor dormancy. JNCI, 99(4), 309–321.

    CAS  PubMed  Google Scholar 

  155. Corno, C., & Perego, P. (2019). KiSS1 in regulation of metastasis and response to antitumor drugs. Drug Resistance Updates, 42, 12–21.

    PubMed  Google Scholar 

  156. Aguirre-Ghiso, J. A., & Sosa, M. S. (2018). Emerging topics on disseminated cancer cell dormancy and the paradigm of metastasis. Annual Review of Cancer Biology, 2(1), 377–393.

    Google Scholar 

  157. Aguirre Ghiso, J. A. (2002). Inhibition of FAK signaling activated by urokinase receptor induces dormancy in human carcinoma cells in vivo. Oncogene, 21(16), 2513–2524.

    PubMed  Google Scholar 

  158. Yi, T. F., Tan, K. R., Cho, S. G., Wang, Y., Luo, J., Zhang, W. Z., et al. (2010). Regulation of embryonic kidney branching morphogenesis and glomerular development by KISS1 Receptor (Gpr54) through NFAT2-and Sp1-mediated Bmp7 expression. Journal of Biological Chemistry, 285(23), 17811–17820.

    CAS  PubMed  Google Scholar 

  159. Bragado, P., Estrada, Y., Parikh, F., Krause, S., Capobianco, C., Farina, H. G., et al. (2013). TGF-beta2 dictates disseminated tumour cell fate in target organs through TGF-beta-RIII and p38alpha/beta signalling. Nature Cell Biology, 15(11), 1351–1361.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Kobayashi, A., Okuda, H., Xing, F., Pandey, P. R., Watabe, M., Hirota, S., et al. (2011). Bone morphogenetic protein 7 in dormancy and metastasis of prostate cancer stem-like cells in bone. Journal of Experimental Medicine, 208(13), 2641–2655.

    CAS  PubMed  Google Scholar 

  161. Song, G. Q., & Zhao, Y. (2016). Kisspeptin 10 inhibits the Warburg effect in breast cancer through the Smad signaling pathway: both in vitro and in vivo. American Journal of Translational Research, 8(1), 188–195.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Johnson, R. W., Finger, E. C., Olcina, M. M., Vilalta, M., Aguilera, T., Miao, Y., et al. (2016). Induction of LIFR confers a dormancy phenotype in breast cancer cells disseminated to the bone marrow. Nature Cell Biology, 18(10), 1078–1089.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Kim, T. H., & Cho, S. G. (2017). Kisspeptin inhibits cancer growth and metastasis via activation of EIF2AK2. Molecular Medicine Reports, 16(5), 7585–7590.

    CAS  PubMed  Google Scholar 

  164. Taylor, J., Pampillo, M., Bhattacharya, M., & Babwah, A. V. (2014). Kisspeptin/KISS1R signaling potentiates extravillous trophoblast adhesion to type-I collagen in a PKC- and ERK1/2-dependent manner. Molecular Reproduction and Development, 81(1), 42–54.

    CAS  PubMed  Google Scholar 

  165. Kim, G. L., Dhillon, S. S., & Belsham, D. D. (2010). Kisspeptin directly regulates neuropeptide Y synthesis and secretion via the ERK1/2 and p38 mitogen-activated protein kinase signaling pathways in NPY-secreting hypothalamic neurons. Endocrinology, 151(10), 5038–5047.

    CAS  PubMed  Google Scholar 

  166. Chen, J., Fu, R., Cui, Y., Pan, J., Li, Y., Zhang, X., et al. (2014). LIM-homeodomain transcription factor Isl-1 mediates kisspeptin's effect on insulin secretion in mice. Molecular Endocrinology, 28(8), 1276–1290.

    PubMed  PubMed Central  Google Scholar 

  167. Navenot, J. M., Fujii, N., & Peiper, S. C. (2009). KiSS1 metastasis suppressor gene product induces suppression of tyrosine kinase receptor signaling to Akt, tumor necrosis factor family ligand expression, and apoptosis. Molecular Pharmacology, 75(5), 1074–1083.

    CAS  PubMed  Google Scholar 

  168. Stathatos, N., Bourdeau, I., Espinosa, A. V., Saji, M., Vasko, V. V., Burman, K. D., et al. (2005). KiSS-1/G protein-coupled receptor 54 metastasis suppressor pathway increases myocyte-enriched calcineurin interacting protein 1 expression and chronically inhibits calcineurin activity. The Journal of Clinical Endocrinology and Metabolism, 90(9), 5432–5440.

    CAS  PubMed  Google Scholar 

  169. Platonov, M. E., Borovjagin, A. V., Kaverina, N., Xiao, T., Kadagidze, Z., Lesniak, M., et al. (2018). KISS1 tumor suppressor restricts angiogenesis of breast cancer brain metastases and sensitizes them to oncolytic virotherapy in vitro. Cancer Letters, 417, 75–88.

    CAS  PubMed  Google Scholar 

  170. Chen, S., Su, X., Gao, J., Han, H., Chen, Z., & Lin, S. (2015). [Suppression of Kiss-1 gene inhibits HCT116 human colorectal carcinoma cell migration in vitro via nuclear factor-kappaB signaling pathway]. Nan Fang Yi Ke Da Xue Xue Bao. Journal of Southern Medical University, 35(11), 1643–1648.

    CAS  PubMed  Google Scholar 

  171. Gorbunova, O. L., & Shirshev, S. V. (2014). The role of kisspeptin in immune tolerance formation during pregnancy. Doklady Biological Sciences, 457(1), 258–260.

    CAS  PubMed  Google Scholar 

  172. Huang, C., Wang, H. Y., Wang, M. E., Hsu, M. C., Wu, Y. S., Jiang, Y. F., et al. (2019). Kisspeptin-activated autophagy independently suppresses non-glucose-stimulated insulin secretion from pancreatic beta-cells. Scientific Reports, 9(1), 17451.

    PubMed  PubMed Central  Google Scholar 

  173. Welch, D. R., & Hurst, D. R. (2019). Defining the hallmarks of metastasis. Cancer Research, 79(12), 3011–3027.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Mendoza, A., Hong, S. H., Osborne, T., Khan, M. A., Campbell, K., Briggs, J., et al. (2010). Modeling metastasis biology and therapy in real time in the mouse lung. The Journal of Clinical Investigation, 120(8), 2979–2988.

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Young, E. D., Strom, K., Tsue, A. F., Usset, J. L., MacPherson, S., McGuire, J. T., et al. (2018). Automated quantitative image analysis for ex vivo metastasis assays reveals differing lung composition requirements for metastasis suppression by KISS1. Clinical & Experimental Metastasis, 35(1-2), 77–86.

    CAS  Google Scholar 

  176. Dotterweich, J., Tower, R. J., Brandl, A., Muller, M., Hofbauer, L. C., Beilhack, A., et al. (2016). The KISS1 receptor as an in vivo microenvironment imaging biomarker of multiple myeloma bone disease. PLoS One, 11(5), e0155087.

    PubMed  PubMed Central  Google Scholar 

  177. Ong, C. P., Lee, W. L., Tang, Y. Q., & Yap, W. H. (2019). Honokiol: a review of its anticancer potential and mechanisms. Cancers (Basel), 12(1), 48.

    Google Scholar 

  178. Cheng, S., Castillo, V., Eliaz, I., & Sliva, D. (2015). Honokiol suppresses metastasis of renal cell carcinoma by targeting KISS1/KISS1R signaling. International Journal of Oncology, 46(6), 2293–2298.

    CAS  PubMed  PubMed Central  Google Scholar 

  179. deRoux, N., Genin, E., Carel, J. C., Matsuda, F., Chaussain, J. L., & Milgrom, E. (2003). Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. PNAS, 100(19), 10972–10976.

    CAS  Google Scholar 

  180. Curtis, A. E., Cooke, J. H., Baxter, J. E., Parkinson, J. R., Bataveljic, A., Ghatei, M. A., et al. (2010). A kisspeptin-10 analog with greater in vivo bioactivity than kisspeptin-10. American Journal of Physiology. Endocrinology and Metabolism, 298(2), E296–E303.

    CAS  PubMed  Google Scholar 

  181. Asami, T., Nishizawa, N., Ishibashi, Y., Nishibori, K., Horikoshi, Y., Matsumoto, H., et al. (2012). Trypsin resistance of a decapeptide KISS1R agonist containing an Nomega-methylarginine substitution. Bioorganic & Medicinal Chemistry Letters, 22(20), 6328–6332.

    CAS  Google Scholar 

  182. Niida, A., Wang, Z., Tomita, K., Oishi, S., Tamamura, H., Otaka, A., et al. (2006). Design and synthesis of downsized metastin (45-54) analogs with maintenance of high GPR54 agonistic activity. Bioorganic & Medicinal Chemistry Letters, 16(1), 134–137.

    CAS  Google Scholar 

  183. MacLean, D. B., Matsui, H., Suri, A., Neuwirth, R., & Colombel, M. (2014). Sustained exposure to the investigational Kisspeptin analog, TAK-448, down-regulates testosterone into the castration range in healthy males and in patients with prostate cancer: results from two phase 1 studies. The Journal of Clinical Endocrinology and Metabolism, 99(8), E1445–E1453.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work done in the authors’ labs was funded primarily by the National Foundation for Cancer Research; Susan G. Komen for the Cure (SAC110037); METAvivor Research and Support, Inc.; and USPHS-National Institutes of Health (Grant No. CA87728; CA134981); National Cancer Institute P30-CA168524 (DRW) and National Institutes of Health GM103418 and the KUMC Biomedical Research Training Program (TL); and the Hall Family Professorship in Molecular Medicine. We apologize to any authors whose work was omitted due to article guidelines. We are also grateful for helpful comments and suggestions from Thomas Beadnell, Rosalyn Zimmermann, and Adam Scheid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danny R. Welch.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Informed Consent

This review summarizes only published results from clinical studies. To the best of the authors’ knowledge, all studies were performed in compliance with applicable human subject protection policies, guidelines, and laws.

Animal Studies

This review summarizes only published results utilizing animals for experimental studies. All work from the authors’ laboratories was approved by relevant Institutional Animal Care and Use Committees. To the best of the authors’ knowledge, all other studies were performed in compliance with applicable policies, guidelines, and laws regarding humane housing, handling, and treatment of research animals.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ly, T., Harihar, S. & Welch, D.R. KISS1 in metastatic cancer research and treatment: potential and paradoxes. Cancer Metastasis Rev 39, 739–754 (2020). https://doi.org/10.1007/s10555-020-09868-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-020-09868-9

Keywords

Navigation