Skip to main content

Advertisement

Log in

One microenvironment does not fit all: heterogeneity beyond cancer cells

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Human cancers exhibit formidable molecular heterogeneity, to a large extent accounting for the incomplete and transitory efficacy of current anti-cancer therapies. However, neoplastic cells alone do not manifest the disease, but conscript a battery of non-tumor cells to enable and sustain hallmark capabilities of cancer. Escaping immunosurveillance is one of such capabilities. Tumors evolve immunosuppressive microenvironment to subvert anti-tumor immunity. In this review, we will focus on tumor-associated myeloid cells, which constitute an essential part of the immune microenvironment and reciprocally interact with cancer cells to establish malignancy toward metastasis. The diversity and plasticity of these cells constitute another layer of heterogeneity, beyond the heterogeneity of cancer cells themselves. We envision that immune microenvironment co-evolves with the genetic heterogeneity of tumor. Addressing the question of how genetically distinct tumors shape and are shaped by unique immune microenvironment will provide an attractive rationale to develop novel immunotherapeutic modalities. Here, we discuss the complex nature of tumor microenvironment, with an emphasis on the cellular and functional heterogeneity among tumor-associated myeloid cells as well as immune environment heterogeneity in the context of a full spectrum of human breast cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Egeblad, M., Nakasone, E. S., & Werb, Z. (2010). Tumors as organs: complex tissues that interface with the entire organism. Developmental Cell, 18(6), 884–901. doi:10.1016/j.devcel.2010.05.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. McAllister, S. S., & Weinberg, R. A. (2014). The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nature Cell Biology, 16(8), 717–727. doi:10.1038/ncb3015.

    Article  CAS  PubMed  Google Scholar 

  3. Hanahan, D., & Coussens, L. M. (2012). Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell, 21(3), 309–322. doi:10.1016/j.ccr.2012.02.022.

    Article  CAS  PubMed  Google Scholar 

  4. Quail, D. F., & Joyce, J. A. (2013). Microenvironmental regulation of tumor progression and metastasis. Nature Medicine, 19(11), 1423–1437. doi:10.1038/nm.3394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bissell, M. J., & Hines, W. C. (2011). Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nature Medicine, 17(3), 320–329. doi:10.1038/nm.2328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kitamura, T., Qian, B. Z., & Pollard, J. W. (2015). Immune cell promotion of metastasis. Nature Reviews. Immunology, 15(2), 73–86. doi:10.1038/nri3789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Allinen, M., Beroukhim, R., Cai, L., Brennan, C., Lahti-Domenici, J., Huang, H., et al. (2004). Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell, 6(1), 17–32. doi:10.1016/j.ccr.2004.06.010.

    Article  CAS  PubMed  Google Scholar 

  8. Casey, T., Bond, J., Tighe, S., Hunter, T., Lintault, L., Patel, O., et al. (2009). Molecular signatures suggest a major role for stromal cells in development of invasive breast cancer. Breast Cancer Research and Treatment, 114(1), 47–62. doi:10.1007/s10549-008-9982-8.

    Article  CAS  PubMed  Google Scholar 

  9. Chang, H. Y., Sneddon, J. B., Alizadeh, A. A., Sood, R., West, R. B., Montgomery, K., et al. (2004). Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biology, 2(2), E7. doi:10.1371/journal.pbio.0020007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Ma, X. J., Dahiya, S., Richardson, E., Erlander, M., & Sgroi, D. C. (2009). Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Research, 11(1), R7. doi:10.1186/bcr2222.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. de Visser, K. E., Eichten, A., & Coussens, L. M. (2006). Paradoxical roles of the immune system during cancer development. Nature Reviews. Cancer, 6(1), 24–37. doi:10.1038/nrc1782.

    Article  PubMed  CAS  Google Scholar 

  12. Grivennikov, S. I., Greten, F. R., & Karin, M. (2010). Immunity, inflammation, and cancer. Cell, 140(6), 883–899. doi:10.1016/j.cell.2010.01.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mantovani, A., Allavena, P., Sica, A., & Balkwill, F. (2008). Cancer-related inflammation. Nature, 454(7203), 436–444. doi:10.1038/nature07205.

    Article  CAS  PubMed  Google Scholar 

  14. Arwert, E. N., Hoste, E., & Watt, F. M. (2012). Epithelial stem cells, wound healing and cancer. Nature Reviews. Cancer, 12(3), 170–180. doi:10.1038/nrc3217.

    Article  CAS  PubMed  Google Scholar 

  15. Schafer, M., & Werner, S. (2008). Cancer as an overhealing wound: an old hypothesis revisited. Nature Reviews. Molecular Cell Biology, 9(8), 628–638. doi:10.1038/nrm2455.

    Article  CAS  PubMed  Google Scholar 

  16. Siegel, R. L., Miller, K. D., & Jemal, A. (2015). Cancer statistics, 2015. CA: a Cancer Journal for Clinicians, 65(1), 5–29. doi:10.3322/caac.21254.

    Google Scholar 

  17. Comprehensive molecular portraits of human breast tumours (2012). Nature, 490(7418), 61–70. doi:10.1038/nature11412.

    Article  CAS  Google Scholar 

  18. Curtis, C., Shah, S. P., Chin, S. F., Turashvili, G., Rueda, O. M., Dunning, M. J., et al. (2012). The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature, 486(7403), 346–352. doi:10.1038/nature10983.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sorlie, T., Perou, C. M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., et al. (2001). Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proceedings of the National Academy of Sciences of the United States of America, 98(19), 10869–10874. doi:10.1073/pnas.191367098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sorlie, T., Tibshirani, R., Parker, J., Hastie, T., Marron, J. S., Nobel, A., et al. (2003). Repeated observation of breast tumor subtypes in independent gene expression data sets. Proceedings of the National Academy of Sciences of the United States of America, 100(14), 8418–8423. doi:10.1073/pnas.0932692100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. van de Vijver, M. J., He, Y. D., van’t Veer, L. J., Dai, H., Hart, A. A., Voskuil, D. W., et al. (2002). A gene-expression signature as a predictor of survival in breast cancer. The New England Journal of Medicine, 347(25), 1999–2009. doi:10.1056/NEJMoa021967.

    Article  PubMed  Google Scholar 

  22. van ’t Veer, L. J., Dai, H., van de Vijver, M. J., He, Y. D., Hart, A. A., Mao, M., et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature, 415(6871), 530–536. doi:10.1038/415530a.

    Article  PubMed  Google Scholar 

  23. Greaves, M., & Maley, C. C. (2012). Clonal evolution in cancer. Nature, 481(7381), 306–313. doi:10.1038/nature10762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shackleton, M., Quintana, E., Fearon, E. R., & Morrison, S. J. (2009). Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell, 138(5), 822–829. doi:10.1016/j.cell.2009.08.017.

    Article  CAS  PubMed  Google Scholar 

  25. Campbell, L. L., & Polyak, K. (2007). Breast tumor heterogeneity: cancer stem cells or clonal evolution? Cell Cycle, 6(19), 2332–2338.

    Article  CAS  PubMed  Google Scholar 

  26. Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G., & Hacohen, N. (2015). Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell, 160(1–2), 48–61. doi:10.1016/j.cell.2014.12.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J., & Schreiber, R. D. (2002). Cancer immunoediting: from immunosurveillance to tumor escape. Nature Immunology, 3(11), 991–998. doi:10.1038/ni1102-991.

    Article  CAS  PubMed  Google Scholar 

  28. Dunn, G. P., Old, L. J., & Schreiber, R. D. (2004). The three Es of cancer immunoediting. Annual Review of Immunology, 22, 329–360. doi:10.1146/annurev.immunol.22.012703.104803.

    Article  CAS  PubMed  Google Scholar 

  29. Schreiber, R. D., Old, L. J., & Smyth, M. J. (2011). Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science, 331(6024), 1565–1570. doi:10.1126/science.1203486.

    Article  CAS  PubMed  Google Scholar 

  30. Motz, G. T., & Coukos, G. (2013). Deciphering and reversing tumor immune suppression. Immunity, 39(1), 61–73. doi:10.1016/j.immuni.2013.07.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hodi, F. S., O’Day, S. J., McDermott, D. F., Weber, R. W., Sosman, J. A., Haanen, J. B., et al. (2010). Improved survival with ipilimumab in patients with metastatic melanoma. The New England Journal of Medicine, 363(8), 711–723. doi:10.1056/NEJMoa1003466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Topalian, S. L., Hodi, F. S., Brahmer, J. R., Gettinger, S. N., Smith, D. C., McDermott, D. F., et al. (2012). Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. The New England Journal of Medicine, 366(26), 2443–2454. doi:10.1056/NEJMoa1200690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pardoll, D. M. (2012). The blockade of immune checkpoints in cancer immunotherapy. Nature Reviews. Cancer, 12(4), 252–264. doi:10.1038/nrc3239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Van Allen, E. M., Miao, D., Schilling, B., Shukla, S. A., Blank, C., Zimmer, L., et al. (2015). Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science, 350(6257), 207–211. doi:10.1126/science.aad0095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gabrilovich, D. I., Ostrand-Rosenberg, S., & Bronte, V. (2012). Coordinated regulation of myeloid cells by tumours. Nature Reviews. Immunology, 12(4), 253–268. doi:10.1038/nri3175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sica, A., Porta, C., Morlacchi, S., Banfi, S., Strauss, L., Rimoldi, M., et al. (2012). Origin and functions of tumor-associated myeloid cells (TAMCs). Cancer Microenvironment, 5(2), 133–149. doi:10.1007/s12307-011-0091-6.

    Article  CAS  PubMed  Google Scholar 

  37. Galdiero, M. R., Bonavita, E., Barajon, I., Garlanda, C., Mantovani, A., & Jaillon, S. (2013). Tumor associated macrophages and neutrophils in cancer. Immunobiology, 218(11), 1402–1410. doi:10.1016/j.imbio.2013.06.003.

    Article  CAS  PubMed  Google Scholar 

  38. Banchereau, J., & Steinman, R. M. (1998). Dendritic cells and the control of immunity. Nature, 392(6673), 245–252. doi:10.1038/32588.

    Article  CAS  PubMed  Google Scholar 

  39. Palucka, K., & Banchereau, J. (2012). Cancer immunotherapy via dendritic cells. Nature Reviews. Cancer, 12(4), 265–277. doi:10.1038/nrc3258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Steinman, R. M., & Banchereau, J. (2007). Taking dendritic cells into medicine. Nature, 449(7161), 419–426. doi:10.1038/nature06175.

    Article  CAS  PubMed  Google Scholar 

  41. Khazaie, K., Blatner, N. R., Khan, M. W., Gounari, F., Gounaris, E., Dennis, K., et al. (2011). The significant role of mast cells in cancer. Cancer Metastasis Reviews, 30(1), 45–60. doi:10.1007/s10555-011-9286-z.

    Article  CAS  PubMed  Google Scholar 

  42. Oldford, S. A., & Marshall, J. S. (2015). Mast cells as targets for immunotherapy of solid tumors. Molecular Immunology, 63(1), 113–124. doi:10.1016/j.molimm.2014.02.020.

    Article  CAS  PubMed  Google Scholar 

  43. Pollard, J. W. (2009). Trophic macrophages in development and disease. Nature Reviews. Immunology, 9(4), 259–270. doi:10.1038/nri2528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wynn, T. A., Chawla, A., & Pollard, J. W. (2013). Macrophage biology in development, homeostasis and disease. Nature, 496(7446), 445–455. doi:10.1038/nature12034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ginhoux, F., & Jung, S. (2014). Monocytes and macrophages: developmental pathways and tissue homeostasis. Nature Reviews. Immunology, 14(6), 392–404. doi:10.1038/nri3671.

    Article  CAS  PubMed  Google Scholar 

  46. Allavena, P., Sica, A., Solinas, G., Porta, C., & Mantovani, A. (2008). The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Critical Reviews in Oncology/Hematology, 66(1), 1–9. doi:10.1016/j.critrevonc.2007.07.004.

    Article  PubMed  Google Scholar 

  47. Bingle, L., Brown, N. J., & Lewis, C. E. (2002). The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. The Journal of Pathology, 196(3), 254–265. doi:10.1002/path.1027.

    Article  CAS  PubMed  Google Scholar 

  48. Obeid, E., Nanda, R., Fu, Y. X., & Olopade, O. I. (2013). The role of tumor-associated macrophages in breast cancer progression (review). International Journal of Oncology, 43(1), 5–12. doi:10.3892/ijo.2013.1938.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Mukhtar, R. A., Nseyo, O., Campbell, M. J., & Esserman, L. J. (2011). Tumor-associated macrophages in breast cancer as potential biomarkers for new treatments and diagnostics. Expert Review of Molecular Diagnostics, 11(1), 91–100. doi:10.1586/erm.10.97.

    Article  CAS  PubMed  Google Scholar 

  50. Condeelis, J., & Pollard, J. W. (2006). Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell, 124(2), 263–266. doi:10.1016/j.cell.2006.01.007.

    Article  CAS  PubMed  Google Scholar 

  51. Noy, R., & Pollard, J. W. (2014). Tumor-associated macrophages: from mechanisms to therapy. Immunity, 41(1), 49–61. doi:10.1016/j.immuni.2014.06.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. De Palma, M., & Lewis, C. E. (2013). Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell, 23(3), 277–286. doi:10.1016/j.ccr.2013.02.013.

    Article  CAS  PubMed  Google Scholar 

  53. Ruffell, B., Affara, N. I., & Coussens, L. M. (2012). Differential macrophage programming in the tumor microenvironment. Trends in Immunology, 33(3), 119–126. doi:10.1016/j.it.2011.12.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Qian, B. Z., & Pollard, J. W. (2010). Macrophage diversity enhances tumor progression and metastasis. Cell, 141(1), 39–51. doi:10.1016/j.cell.2010.03.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang, Q. W., Liu, L., Gong, C. Y., Shi, H. S., Zeng, Y. H., Wang, X. Z., et al. (2012). Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature. PloS One, 7(12), e50946. doi:10.1371/journal.pone.0050946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kerr, K. M., Johnson, S. K., King, G., Kennedy, M. M., Weir, J., & Jeffrey, R. (1998). Partial regression in primary carcinoma of the lung: does it occur? Histopathology, 33(1), 55–63.

    CAS  PubMed  Google Scholar 

  57. Kim, D. W., Min, H. S., Lee, K. H., Kim, Y. J., Oh, D. Y., Jeon, Y. K., et al. (2008). High tumour islet macrophage infiltration correlates with improved patient survival but not with EGFR mutations, gene copy number or protein expression in resected non-small cell lung cancer. British Journal of Cancer, 98(6), 1118–1124. doi:10.1038/sj.bjc.6604256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kawai, O., Ishii, G., Kubota, K., Murata, Y., Naito, Y., Mizuno, T., et al. (2008). Predominant infiltration of macrophages and CD8(+) T cells in cancer nests is a significant predictor of survival in stage IV nonsmall cell lung cancer. Cancer, 113(6), 1387–1395. doi:10.1002/cncr.23712.

    Article  CAS  PubMed  Google Scholar 

  59. Bolat, F., Kayaselcuk, F., Nursal, T. Z., Yagmurdur, M. C., Bal, N., & Demirhan, B. (2006). Microvessel density, VEGF expression, and tumor-associated macrophages in breast tumors: correlations with prognostic parameters. Journal of Experimental & Clinical Cancer Research, 25(3), 365–372.

    CAS  Google Scholar 

  60. Kang, J. C., Chen, J. S., Lee, C. H., Chang, J. J., & Shieh, Y. S. (2010). Intratumoral macrophage counts correlate with tumor progression in colorectal cancer. Journal of Surgical Oncology, 102(3), 242–248. doi:10.1002/jso.21617.

    Article  CAS  PubMed  Google Scholar 

  61. Leek, R. D., Lewis, C. E., Whitehouse, R., Greenall, M., Clarke, J., & Harris, A. L. (1996). Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Research, 56(20), 4625–4629.

    CAS  PubMed  Google Scholar 

  62. Nishie, A., Ono, M., Shono, T., Fukushi, J., Otsubo, M., Onoue, H., et al. (1999). Macrophage infiltration and heme oxygenase-1 expression correlate with angiogenesis in human gliomas. Clinical Cancer Research, 5(5), 1107–1113.

    CAS  PubMed  Google Scholar 

  63. Robinson, B. D., Sica, G. L., Liu, Y. F., Rohan, T. E., Gertler, F. B., Condeelis, J. S., et al. (2009). Tumor microenvironment of metastasis in human breast carcinoma: a potential prognostic marker linked to hematogenous dissemination. Clinical Cancer Research, 15(7), 2433–2441. doi:10.1158/1078-0432.ccr-08-2179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Salvesen, H. B., & Akslen, L. A. (1999). Significance of tumour-associated macrophages, vascular endothelial growth factor and thrombospondin-1 expression for tumour angiogenesis and prognosis in endometrial carcinomas. International Journal of Cancer, 84(5), 538–543.

    Article  CAS  PubMed  Google Scholar 

  65. Varney, M. L., Johansson, S. L., & Singh, R. K. (2005). Tumour-associated macrophage infiltration, neovascularization and aggressiveness in malignant melanoma: role of monocyte chemotactic protein-1 and vascular endothelial growth factor-a. Melanoma Research, 15(5), 417–425.

    Article  CAS  PubMed  Google Scholar 

  66. Lewis, C. E., Leek, R., Harris, A., & McGee, J. O. (1995). Cytokine regulation of angiogenesis in breast cancer: the role of tumor-associated macrophages. Journal of Leukocyte Biology, 57(5), 747–751.

    CAS  PubMed  Google Scholar 

  67. Beck, A. H., Espinosa, I., Edris, B., Li, R., Montgomery, K., Zhu, S., et al. (2009). The macrophage colony-stimulating factor 1 response signature in breast carcinoma. Clinical Cancer Research, 15(3), 778–787. doi:10.1158/1078-0432.ccr-08-1283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Campbell, M. J., Tonlaar, N. Y., Garwood, E. R., Huo, D., Moore, D. H., Khramtsov, A. I., et al. (2011). Proliferating macrophages associated with high grade, hormone receptor negative breast cancer and poor clinical outcome. Breast Cancer Research and Treatment, 128(3), 703–711. doi:10.1007/s10549-010-1154-y.

    Article  PubMed  Google Scholar 

  69. Sharma, M., Beck, A. H., Webster, J. A., Espinosa, I., Montgomery, K., Varma, S., et al. (2010). Analysis of stromal signatures in the tumor microenvironment of ductal carcinoma in situ. Breast Cancer Research and Treatment, 123(2), 397–404. doi:10.1007/s10549-009-0654-0.

    Article  CAS  PubMed  Google Scholar 

  70. DeNardo, D. G., Brennan, D. J., Rexhepaj, E., Ruffell, B., Shiao, S. L., Madden, S. F., et al. (2011). Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discovery, 1(1), 54–67. doi:10.1158/2159-8274.cd-10-0028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dirkx, A. E., Oude Egbrink, M. G., Wagstaff, J., & Griffioen, A. W. (2006). Monocyte/macrophage infiltration in tumors: modulators of angiogenesis. Journal of Leukocyte Biology, 80(6), 1183–1196. doi:10.1189/jlb.0905495.

    Article  CAS  PubMed  Google Scholar 

  72. De Palma, M., Venneri, M. A., Galli, R., Sergi Sergi, L., Politi, L. S., Sampaolesi, M., et al. (2005). Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell, 8(3), 211–226. doi:10.1016/j.ccr.2005.08.002.

    Article  CAS  PubMed  Google Scholar 

  73. Lin, E. Y., & Pollard, J. W. (2007). Tumor-associated macrophages press the angiogenic switch in breast cancer. Cancer Research, 67(11), 5064–5066. doi:10.1158/0008-5472.can-07-0912.

    Article  CAS  PubMed  Google Scholar 

  74. Lin, E. Y., Li, J. F., Bricard, G., Wang, W., Deng, Y., Sellers, R., et al. (2007). Vascular endothelial growth factor restores delayed tumor progression in tumors depleted of macrophages. Molecular Oncology, 1(3), 288–302. doi:10.1016/j.molonc.2007.10.003.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Zabuawala, T., Taffany, D. A., Sharma, S. M., Merchant, A., Adair, B., Srinivasan, R., et al. (2010). An ets2-driven transcriptional program in tumor-associated macrophages promotes tumor metastasis. Cancer Research, 70(4), 1323–1333. doi:10.1158/0008-5472.can-09-1474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lewis, J. S., Landers, R. J., Underwood, J. C., Harris, A. L., & Lewis, C. E. (2000). Expression of vascular endothelial growth factor by macrophages is up-regulated in poorly vascularized areas of breast carcinomas. The Journal of Pathology, 192(2), 150–158. doi:10.1002/1096-9896(2000)9999:9999<::aid-path687>3.0.co;2-g.

    Article  CAS  PubMed  Google Scholar 

  77. Forget, M. A., Voorhees, J. L., Cole, S. L., Dakhlallah, D., Patterson, I. L., Gross, A. C., et al. (2014). Macrophage colony-stimulating factor augments Tie2-expressing monocyte differentiation, angiogenic function, and recruitment in a mouse model of breast cancer. PloS One, 9(6), e98623. doi:10.1371/journal.pone.0098623.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Eubank, T. D., Roberts, R. D., Khan, M., Curry, J. M., Nuovo, G. J., Kuppusamy, P., et al. (2009). Granulocyte macrophage colony-stimulating factor inhibits breast cancer growth and metastasis by invoking an anti-angiogenic program in tumor-educated macrophages. Cancer Research, 69(5), 2133–2140. doi:10.1158/0008-5472.can-08-1405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wyckoff, J., Wang, W., Lin, E. Y., Wang, Y., Pixley, F., Stanley, E. R., et al. (2004). A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Research, 64(19), 7022–7029. doi:10.1158/0008-5472.can-04-1449.

    Article  CAS  PubMed  Google Scholar 

  80. DeNardo, D. G., Barreto, J. B., Andreu, P., Vasquez, L., Tawfik, D., Kolhatkar, N., et al. (2009). CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell, 16(2), 91–102. doi:10.1016/j.ccr.2009.06.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Su, S., Liu, Q., Chen, J., Chen, J., Chen, F., He, C., et al. (2014). A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. Cancer Cell, 25(5), 605–620. doi:10.1016/j.ccr.2014.03.021.

    Article  PubMed  CAS  Google Scholar 

  82. Chen, J., Yao, Y., Gong, C., Yu, F., Su, S., Chen, J., et al. (2011). CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell, 19(4), 541–555. doi:10.1016/j.ccr.2011.02.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yang, M., Chen, J., Su, F., Yu, B., Su, F., Lin, L., et al. (2011). Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Molecular Cancer, 10, 117. doi:10.1186/1476-4598-10-117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ojalvo, L. S., Whittaker, C. A., Condeelis, J. S., & Pollard, J. W. (2010). Gene expression analysis of macrophages that facilitate tumor invasion supports a role for Wnt-signaling in mediating their activity in primary mammary tumors. Journal of Immunology, 184(2), 702–712. doi:10.4049/jimmunol.0902360.

    Article  CAS  Google Scholar 

  85. Wyckoff, J. B., Wang, Y., Lin, E. Y., Li, J. F., Goswami, S., Stanley, E. R., et al. (2007). Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Research, 67(6), 2649–2656. doi:10.1158/0008-5472.can-06-1823.

    Article  CAS  PubMed  Google Scholar 

  86. Harney, A. S., Arwert, E. N., Entenberg, D., Wang, Y., Guo, P., Qian, B. Z., et al. (2015). Real-time imaging reveals local, transient vascular permeability, and tumor cell intravasation stimulated by TIE2hi macrophage-derived VEGFA. Cancer Discovery, 5(9), 932–943. doi:10.1158/2159-8290.cd-15-0012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rohan, T. E., Xue, X., Lin, H. M., D’Alfonso, T. M., Ginter, P. S., Oktay, M. H., et al. (2014). Tumor microenvironment of metastasis and risk of distant metastasis of breast cancer. Journal of the National Cancer Institute, 106(8), dju136. doi:10.1093/jnci/dju136.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Weiss, L. (2000). Metastasis of cancer: a conceptual history from antiquity to the 1990s. Cancer Metastasis Reviews, 19(3–4) I-xi, 193–383.

    Article  Google Scholar 

  89. Qian, B. Z., Li, J., Zhang, H., Kitamura, T., Zhang, J., Campion, L. R., et al. (2011). CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature, 475(7355), 222–225. doi:10.1038/nature10138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Qian, B., Deng, Y., Im, J. H., Muschel, R. J., Zou, Y., Li, J., et al. (2009). A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PloS One, 4(8), e6562. doi:10.1371/journal.pone.0006562.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Kitamura, T., Qian, B. Z., Soong, D., Cassetta, L., Noy, R., Sugano, G., et al. (2015). CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages. The Journal of Experimental Medicine, 212(7), 1043–1059. doi:10.1084/jem.20141836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ferjancic, S., Gil-Bernabe, A. M., Hill, S. A., Allen, P. D., Richardson, P., Sparey, T., et al. (2013). VCAM-1 and VAP-1 recruit myeloid cells that promote pulmonary metastasis in mice. Blood, 121(16), 3289–3297. doi:10.1182/blood-2012-08-449819.

    Article  CAS  PubMed  Google Scholar 

  93. Chen, Q., Zhang, X. H., & Massague, J. (2011). Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell, 20(4), 538–549. doi:10.1016/j.ccr.2011.08.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Pommier, A., Audemard, A., Durand, A., Lengagne, R., Delpoux, A., Martin, B., et al. (2013). Inflammatory monocytes are potent antitumor effectors controlled by regulatory CD4+ T cells. Proceedings of the National Academy of Sciences of the United States of America, 110(32), 13085–13090. doi:10.1073/pnas.1300314110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Doedens, A. L., Stockmann, C., Rubinstein, M. P., Liao, D., Zhang, N., DeNardo, D. G., et al. (2010). Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. Cancer Research, 70(19), 7465–7475. doi:10.1158/0008-5472.can-10-1439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sharda, D. R., Yu, S., Ray, M., Squadrito, M. L., De Palma, M., Wynn, T. A., et al. (2011). Regulation of macrophage arginase expression and tumor growth by the Ron receptor tyrosine kinase. Journal of Immunology, 187(5), 2181–2192. doi:10.4049/jimmunol.1003460.

    Article  CAS  Google Scholar 

  97. Strachan, D. C., Ruffell, B., Oei, Y., Bissell, M. J., Coussens, L. M., Pryer, N., et al. (2013). CSF1R inhibition delays cervical and mammary tumor growth in murine models by attenuating the turnover of tumor-associated macrophages and enhancing infiltration by CD8 T cells. Oncoimmunology, 2(12), e26968. doi:10.4161/onci.26968.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Franklin, R. A., Liao, W., Sarkar, A., Kim, M. V., Bivona, M. R., Liu, K., et al. (2014). The cellular and molecular origin of tumor-associated macrophages. Science, 344(6186), 921–925. doi:10.1126/science.1252510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bloch, O., Crane, C. A., Kaur, R., Safaee, M., Rutkowski, M. J., & Parsa, A. T. (2013). Gliomas promote immunosuppression through induction of B7-H1 expression in tumor-associated macrophages. Clinical Cancer Research, 19(12), 3165–3175. doi:10.1158/1078-0432.ccr-12-3314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Curiel, T. J., Coukos, G., Zou, L., Alvarez, X., Cheng, P., Mottram, P., et al. (2004). Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nature Medicine, 10(9), 942–949. doi:10.1038/nm1093.

    Article  CAS  PubMed  Google Scholar 

  101. Liu, J., Zhang, N., Li, Q., Zhang, W., Ke, F., Leng, Q., et al. (2011). Tumor-associated macrophages recruit CCR6+ regulatory T cells and promote the development of colorectal cancer via enhancing CCL20 production in mice. PloS One, 6(4), e19495. doi:10.1371/journal.pone.0019495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Savage, N. D., de Boer, T., Walburg, K. V., Joosten, S. A., van Meijgaarden, K., Geluk, A., et al. (2008). Human anti-inflammatory macrophages induce Foxp3+ GITR+ CD25+ regulatory T cells, which suppress via membrane-bound TGFbeta-1. Journal of Immunology, 181(3), 2220–2226.

    Article  CAS  Google Scholar 

  103. Sica, A., & Mantovani, A. (2012). Macrophage plasticity and polarization: in vivo veritas. The Journal of Clinical Investigation, 122(3), 787–795. doi:10.1172/jci59643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mantovani, A., Sica, A., Sozzani, S., Allavena, P., Vecchi, A., & Locati, M. (2004). The chemokine system in diverse forms of macrophage activation and polarization. Trends in Immunology, 25(12), 677–686. doi:10.1016/j.it.2004.09.015.

    Article  CAS  PubMed  Google Scholar 

  105. Gordon, S., & Taylor, P. R. (2005). Monocyte and macrophage heterogeneity. Nature Reviews. Immunology, 5(12), 953–964. doi:10.1038/nri1733.

    Article  CAS  PubMed  Google Scholar 

  106. Stein, M., Keshav, S., Harris, N., & Gordon, S. (1992). Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. The Journal of Experimental Medicine, 176(1), 287–292.

    Article  CAS  PubMed  Google Scholar 

  107. Mantovani, A., Sozzani, S., Locati, M., Allavena, P., & Sica, A. (2002). Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in Immunology, 23(11), 549–555.

    Article  CAS  PubMed  Google Scholar 

  108. Noel, W., Raes, G., Hassanzadeh Ghassabeh, G., De Baetselier, P., & Beschin, A. (2004). Alternatively activated macrophages during parasite infections. Trends in Parasitology, 20(3), 126–133. doi:10.1016/j.pt.2004.01.004.

    Article  CAS  PubMed  Google Scholar 

  109. Biswas, S. K., & Mantovani, A. (2010). Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nature Immunology, 11(10), 889–896. doi:10.1038/ni.1937.

    Article  CAS  PubMed  Google Scholar 

  110. Mantovani, A., & Sica, A. (2010). Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Current Opinion in Immunology, 22(2), 231–237. doi:10.1016/j.coi.2010.01.009.

    Article  CAS  PubMed  Google Scholar 

  111. Kubagawa, H., Chen, C. C., Ho, L. H., Shimada, T. S., Gartland, L., Mashburn, C., et al. (1999). Biochemical nature and cellular distribution of the paired immunoglobulin-like receptors, PIR-A and PIR-B. The Journal of Experimental Medicine, 189(2), 309–318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hu, X., Chen, J., Wang, L., & Ivashkiv, L. B. (2007). Crosstalk among Jak-STAT, Toll-like receptor, and ITAM-dependent pathways in macrophage activation. Journal of Leukocyte Biology, 82(2), 237–243. doi:10.1189/jlb.1206763.

    Article  CAS  PubMed  Google Scholar 

  113. Martinez, F. O., Gordon, S., Locati, M., & Mantovani, A. (2006). Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. Journal of Immunology, 177(10), 7303–7311.

    Article  CAS  Google Scholar 

  114. Romagnani, P., De Paulis, A., Beltrame, C., Annunziato, F., Dente, V., Maggi, E., et al. (1999). Tryptase-chymase double-positive human mast cells express the eotaxin receptor CCR3 and are attracted by CCR3-binding chemokines. The American Journal of Pathology, 155(4), 1195–1204. doi:10.1016/s0002-9440(10)65222-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mosser, D. M., & Edwards, J. P. (2008). Exploring the full spectrum of macrophage activation. Nature Reviews. Immunology, 8(12), 958–969. doi:10.1038/nri2448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Natoli, G., & Monticelli, S. (2014). Macrophage activation: glancing into diversity. Immunity, 40(2), 175–177. doi:10.1016/j.immuni.2014.01.004.

    Article  CAS  PubMed  Google Scholar 

  117. Gratchev, A., Kzhyshkowska, J., Kannookadan, S., Ochsenreiter, M., Popova, A., Yu, X., et al. (2008). Activation of a TGF-beta-specific multistep gene expression program in mature macrophages requires glucocorticoid-mediated surface expression of TGF-beta receptor II. Journal of Immunology, 180(10), 6553–6565.

    Article  CAS  Google Scholar 

  118. Hu, X., Chung, A. Y., Wu, I., Foldi, J., Chen, J., Ji, J. D., et al. (2008). Integrated regulation of Toll-like receptor responses by Notch and interferon-gamma pathways. Immunity, 29(5), 691–703. doi:10.1016/j.immuni.2008.08.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ravasi, T., Wells, C., Forest, A., Underhill, D. M., Wainwright, B. J., Aderem, A., et al. (2002). Generation of diversity in the innate immune system: macrophage heterogeneity arises from gene-autonomous transcriptional probability of individual inducible genes. Journal of Immunology, 168(1), 44–50.

    Article  CAS  Google Scholar 

  120. Riches, D. W. (1995). Signalling heterogeneity as a contributing factor in macrophage functional diversity. Seminars in Cell Biology, 6(6), 377–384.

    Article  CAS  PubMed  Google Scholar 

  121. Stout, R. D., Jiang, C., Matta, B., Tietzel, I., Watkins, S. K., & Suttles, J. (2005). Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. Journal of Immunology, 175(1), 342–349.

    Article  CAS  Google Scholar 

  122. Chan, G., Bivins-Smith, E. R., Smith, M. S., & Yurochko, A. D. (2009). NF-kappaB and phosphatidylinositol 3-kinase activity mediates the HCMV-induced atypical M1/M2 polarization of monocytes. Virus Research, 144(1–2), 329–333. doi:10.1016/j.virusres.2009.04.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Chan, G., Bivins-Smith, E. R., Smith, M. S., Smith, P. M., & Yurochko, A. D. (2008). Transcriptome analysis reveals human cytomegalovirus reprograms monocyte differentiation toward an M1 macrophage. Journal of Immunology, 181(1), 698–711.

    Article  CAS  Google Scholar 

  124. Shaul, M. E., Bennett, G., Strissel, K. J., Greenberg, A. S., & Obin, M. S. (2010). Dynamic, M2-like remodeling phenotypes of CD11c+ adipose tissue macrophages during high-fat diet-induced obesity in mice. Diabetes, 59(5), 1171–1181. doi:10.2337/db09-1402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Torroella-Kouri, M., Silvera, R., Rodriguez, D., Caso, R., Shatry, A., Opiela, S., et al. (2009). Identification of a subpopulation of macrophages in mammary tumor-bearing mice that are neither M1 nor M2 and are less differentiated. Cancer Research, 69(11), 4800–4809. doi:10.1158/0008-5472.can-08-3427.

    Article  CAS  PubMed  Google Scholar 

  126. Kadl, A., Meher, A. K., Sharma, P. R., Lee, M. Y., Doran, A. C., Johnstone, S. R., et al. (2010). Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Circulation Research, 107(6), 737–746. doi:10.1161/circresaha.109.215715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Xue, J., Schmidt, S. V., Sander, J., Draffehn, A., Krebs, W., Quester, I., et al. (2014). Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity, 40(2), 274–288. doi:10.1016/j.immuni.2014.01.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Van Overmeire, E., Laoui, D., Keirsse, J., Van Ginderachter, J. A., & Sarukhan, A. (2014). Mechanisms driving macrophage diversity and specialization in distinct tumor microenvironments and parallelisms with other tissues. Frontiers in Immunology, 5, 127. doi:10.3389/fimmu.2014.00127.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Pucci, F., Venneri, M. A., Biziato, D., Nonis, A., Moi, D., Sica, A., et al. (2009). A distinguishing gene signature shared by tumor-infiltrating Tie2-expressing monocytes, blood “resident” monocytes, and embryonic macrophages suggests common functions and developmental relationships. Blood, 114(4), 901–914. doi:10.1182/blood-2009-01-200931.

    Article  CAS  PubMed  Google Scholar 

  130. Sica, A., & Bronte, V. (2007). Altered macrophage differentiation and immune dysfunction in tumor development. The Journal of Clinical Investigation, 117(5), 1155–1166. doi:10.1172/jci31422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Roca, H., Varsos, Z. S., Sud, S., Craig, M. J., Ying, C., & Pienta, K. J. (2009). CCL2 and interleukin-6 promote survival of human CD11b+ peripheral blood mononuclear cells and induce M2-type macrophage polarization. The Journal of Biological Chemistry, 284(49), 34342–34354. doi:10.1074/jbc.M109.042671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hagemann, T., Wilson, J., Burke, F., Kulbe, H., Li, N. F., Pluddemann, A., et al. (2006). Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. Journal of Immunology, 176(8), 5023–5032.

    Article  CAS  Google Scholar 

  133. Biswas, S. K., Gangi, L., Paul, S., Schioppa, T., Saccani, A., Sironi, M., et al. (2006). A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood, 107(5), 2112–2122. doi:10.1182/blood-2005-01-0428.

    Article  CAS  PubMed  Google Scholar 

  134. Hagemann, T., Lawrence, T., McNeish, I., Charles, K. A., Kulbe, H., Thompson, R. G., et al. (2008). "Re-educating" tumor-associated macrophages by targeting NF-kappaB. The Journal of Experimental Medicine, 205(6), 1261–1268. doi:10.1084/jem.20080108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Sierra, J. R., Corso, S., Caione, L., Cepero, V., Conrotto, P., Cignetti, A., et al. (2008). Tumor angiogenesis and progression are enhanced by Sema4D produced by tumor-associated macrophages. The Journal of Experimental Medicine, 205(7), 1673–1685. doi:10.1084/jem.20072602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Rauh, M. J., Ho, V., Pereira, C., Sham, A., Sly, L. M., Lam, V., et al. (2005). SHIP represses the generation of alternatively activated macrophages. Immunity, 23(4), 361–374. doi:10.1016/j.immuni.2005.09.003.

    Article  CAS  PubMed  Google Scholar 

  137. Wang, Y. C., He, F., Feng, F., Liu, X. W., Dong, G. Y., Qin, H. Y., et al. (2010). Notch signaling determines the M1 versus M2 polarization of macrophages in antitumor immune responses. Cancer Research, 70(12), 4840–4849. doi:10.1158/0008-5472.can-10-0269.

    Article  CAS  PubMed  Google Scholar 

  138. Porta, C., Rimoldi, M., Raes, G., Brys, L., Ghezzi, P., Di Liberto, D., et al. (2009). Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor kappaB. Proceedings of the National Academy of Sciences of the United States of America, 106(35), 14978–14983. doi:10.1073/pnas.0809784106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Sinha, P., Clements, V. K., Bunt, S. K., Albelda, S. M., & Ostrand-Rosenberg, S. (2007). Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. Journal of Immunology, 179(2), 977–983.

    Article  CAS  Google Scholar 

  140. Erez, N., Truitt, M., Olson, P., Arron, S. T., & Hanahan, D. (2010). Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell, 17(2), 135–147. doi:10.1016/j.ccr.2009.12.041.

    Article  CAS  PubMed  Google Scholar 

  141. Andreu, P., Johansson, M., Affara, N. I., Pucci, F., Tan, T., Junankar, S., et al. (2010). FcRgamma activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell, 17(2), 121–134. doi:10.1016/j.ccr.2009.12.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Hsu, D. S., Wang, H. J., Tai, S. K., Chou, C. H., Hsieh, C. H., Chiu, P. H., et al. (2014). Acetylation of snail modulates the cytokinome of cancer cells to enhance the recruitment of macrophages. Cancer Cell, 26(4), 534–548. doi:10.1016/j.ccell.2014.09.002.

    Article  CAS  PubMed  Google Scholar 

  143. Biswas, S. K., & Lopez-Collazo, E. (2009). Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends in Immunology, 30(10), 475–487. doi:10.1016/j.it.2009.07.009.

    Article  CAS  PubMed  Google Scholar 

  144. Biswas, S. K., Sica, A., & Lewis, C. E. (2008). Plasticity of macrophage function during tumor progression: regulation by distinct molecular mechanisms. Journal of Immunology, 180(4), 2011–2017.

    Article  CAS  Google Scholar 

  145. Lumeng, C. N., Bodzin, J. L., & Saltiel, A. R. (2007). Obesity induces a phenotypic switch in adipose tissue macrophage polarization. The Journal of Clinical Investigation, 117(1), 175–184. doi:10.1172/jci29881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Dinapoli, M. R., Calderon, C. L., & Lopez, D. M. (1996). The altered tumoricidal capacity of macrophages isolated from tumor-bearing mice is related to reduce expression of the inducible nitric oxide synthase gene. The Journal of Experimental Medicine, 183(4), 1323–1329.

    Article  CAS  PubMed  Google Scholar 

  147. Sica, A., Saccani, A., Bottazzi, B., Polentarutti, N., Vecchi, A., van Damme, J., et al. (2000). Autocrine production of IL-10 mediates defective IL-12 production and NF-kappa B activation in tumor-associated macrophages. Journal of Immunology, 164(2), 762–767.

    Article  CAS  Google Scholar 

  148. Saccani, A., Schioppa, T., Porta, C., Biswas, S. K., Nebuloni, M., Vago, L., et al. (2006). p50 nuclear factor-kappaB overexpression in tumor-associated macrophages inhibits M1 inflammatory responses and antitumor resistance. Cancer Research, 66(23), 11432–11440. doi:10.1158/0008-5472.can-06-1867.

    Article  CAS  PubMed  Google Scholar 

  149. Sica, A., Larghi, P., Mancino, A., Rubino, L., Porta, C., Totaro, M. G., et al. (2008). Macrophage polarization in tumour progression. Seminars in Cancer Biology, 18(5), 349–355. doi:10.1016/j.semcancer.2008.03.004.

    Article  CAS  PubMed  Google Scholar 

  150. Lewis, C. E., & Pollard, J. W. (2006). Distinct role of macrophages in different tumor microenvironments. Cancer Research, 66(2), 605–612. doi:10.1158/0008-5472.can-05-4005.

    Article  CAS  PubMed  Google Scholar 

  151. Kedrin, D., Gligorijevic, B., Wyckoff, J., Verkhusha, V. V., Condeelis, J., Segall, J. E., et al. (2008). Intravital imaging of metastatic behavior through a mammary imaging window. Nature Methods, 5(12), 1019–1021. doi:10.1038/nmeth.1269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Egeblad, M., Ewald, A. J., Askautrud, H. A., Truitt, M. L., Welm, B. E., Bainbridge, E., et al. (2008). Visualizing stromal cell dynamics in different tumor microenvironments by spinning disk confocal microscopy. Disease Models & Mechanisms, 1(2–3), 155–167 discussion 165. doi:10.1242/dmm.000596.

    Article  Google Scholar 

  153. Huang, Y., Yuan, J., Righi, E., Kamoun, W. S., Ancukiewicz, M., Nezivar, J., et al. (2012). Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proceedings of the National Academy of Sciences of the United States of America, 109(43), 17561–17566. doi:10.1073/pnas.1215397109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Movahedi, K., Laoui, D., Gysemans, C., Baeten, M., Stange, G., Van den Bossche, J., et al. (2010). Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Research, 70(14), 5728–5739. doi:10.1158/0008-5472.can-09-4672.

    Article  CAS  PubMed  Google Scholar 

  155. Laoui, D., Van Overmeire, E., Di Conza, G., Aldeni, C., Keirsse, J., Morias, Y., et al. (2014). Tumor hypoxia does not drive differentiation of tumor-associated macrophages but rather fine-tunes the M2-like macrophage population. Cancer Research, 74(1), 24–30. doi:10.1158/0008-5472.can-13-1196.

    Article  CAS  PubMed  Google Scholar 

  156. Murdoch, C., Giannoudis, A., & Lewis, C. E. (2004). Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood, 104(8), 2224–2234. doi:10.1182/blood-2004-03-1109.

    Article  CAS  PubMed  Google Scholar 

  157. Matsumoto, S., Yasui, H., Mitchell, J. B., & Krishna, M. C. (2010). Imaging cycling tumor hypoxia. Cancer Research, 70(24), 10019–10023. doi:10.1158/0008-5472.can-10-2821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Turner, L., Scotton, C., Negus, R., & Balkwill, F. (1999). Hypoxia inhibits macrophage migration. European Journal of Immunology, 29(7), 2280–2287. doi:10.1002/(sici)1521-4141(199907)29:07&#60;2280::aid-immu2280&#62;3.0.co;2-c.

    Article  CAS  PubMed  Google Scholar 

  159. Wain, J. H., Kirby, J. A., & Ali, S. (2002). Leucocyte chemotaxis: examination of mitogen-activated protein kinase and phosphoinositide 3-kinase activation by monocyte chemoattractant proteins-1, −2, −3 and −4. Clinical and Experimental Immunology, 127(3), 436–444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Grimshaw, M. J., & Balkwill, F. R. (2001). Inhibition of monocyte and macrophage chemotaxis by hypoxia and inflammation—a potential mechanism. European Journal of Immunology, 31(2), 480–489. doi:10.1002/1521-4141(200102)31:2&#60;480::aid-immu480&#62;3.0.co;2-l.

    Article  CAS  PubMed  Google Scholar 

  161. Leek, R. D., Talks, K. L., Pezzella, F., Turley, H., Campo, L., Brown, N. S., et al. (2002). Relation of hypoxia-inducible factor-2 alpha (HIF-2 alpha) expression in tumor-infiltrative macrophages to tumor angiogenesis and the oxidative thymidine phosphorylase pathway in human breast cancer. Cancer Research, 62(5), 1326–1329.

    CAS  PubMed  Google Scholar 

  162. Carmeliet, P., & Jain, R. K. (2011). Molecular mechanisms and clinical applications of angiogenesis. Nature, 473(7347), 298–307. doi:10.1038/nature10144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Chao, M. P., Alizadeh, A. A., Tang, C., Myklebust, J. H., Varghese, B., Gill, S., et al. (2010). Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell, 142(5), 699–713. doi:10.1016/j.cell.2010.07.044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Jaiswal, S., Jamieson, C. H., Pang, W. W., Park, C. Y., Chao, M. P., Majeti, R., et al. (2009). CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell, 138(2), 271–285. doi:10.1016/j.cell.2009.05.046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Beatty, G. L., Chiorean, E. G., Fishman, M. P., Saboury, B., Teitelbaum, U. R., Sun, W., et al. (2011). CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science, 331(6024), 1612–1616. doi:10.1126/science.1198443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Schoenberger, S. P., Toes, R. E., van der Voort, E. I., Offringa, R., & Melief, C. J. (1998). T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature, 393(6684), 480–483. doi:10.1038/31002.

    Article  CAS  PubMed  Google Scholar 

  167. Pyonteck, S. M., Akkari, L., Schuhmacher, A. J., Bowman, R. L., Sevenich, L., Quail, D. F., et al. (2013). CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nature Medicine, 19(10), 1264–1272. doi:10.1038/nm.3337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Kolaczkowska, E., & Kubes, P. (2013). Neutrophil recruitment and function in health and inflammation. Nature Reviews. Immunology, 13(3), 159–175. doi:10.1038/nri3399.

    Article  CAS  PubMed  Google Scholar 

  169. Mantovani, A., Cassatella, M. A., Costantini, C., & Jaillon, S. (2011). Neutrophils in the activation and regulation of innate and adaptive immunity. Nature Reviews. Immunology, 11(8), 519–531. doi:10.1038/nri3024.

    Article  CAS  PubMed  Google Scholar 

  170. Nathan, C. (2006). Neutrophils and immunity: challenges and opportunities. Nature Reviews. Immunology, 6(3), 173–182. doi:10.1038/nri1785.

    Article  CAS  PubMed  Google Scholar 

  171. Galli, S. J., Borregaard, N., & Wynn, T. A. (2011). Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nature Immunology, 12(11), 1035–1044. doi:10.1038/ni.2109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Tecchio, C., Scapini, P., Pizzolo, G., & Cassatella, M. A. (2013). On the cytokines produced by human neutrophils in tumors. Seminars in Cancer Biology, 23(3), 159–170. doi:10.1016/j.semcancer.2013.02.004.

    Article  CAS  PubMed  Google Scholar 

  173. Cassatella, M. A. (1999). Neutrophil-derived proteins: selling cytokines by the pound. Advances in Immunology, 73, 369–509.

    Article  CAS  PubMed  Google Scholar 

  174. Tecchio, C., & Cassatella, M. A. (2014). Neutrophil-derived cytokines involved in physiological and pathological angiogenesis. Chemical Immunology and Allergy, 99, 123–137. doi:10.1159/000353358.

    Article  CAS  PubMed  Google Scholar 

  175. Geng, S., Matsushima, H., Okamoto, T., Yao, Y., Lu, R., Page, K., et al. (2013). Emergence, origin, and function of neutrophil-dendritic cell hybrids in experimentally induced inflammatory lesions in mice. Blood, 121(10), 1690–1700. doi:10.1182/blood-2012-07-445197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Matsushima, H., Geng, S., Lu, R., Okamoto, T., Yao, Y., Mayuzumi, N., et al. (2013). Neutrophil differentiation into a unique hybrid population exhibiting dual phenotype and functionality of neutrophils and dendritic cells. Blood, 121(10), 1677–1689. doi:10.1182/blood-2012-07-445189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Taylor, P. R., Roy, S., Leal Jr., S. M., Sun, Y., Howell, S. J., Cobb, B. A., et al. (2014). Activation of neutrophils by autocrine IL-17A-IL-17RC interactions during fungal infection is regulated by IL-6, IL-23, RORgammat and dectin-2. Nature Immunology, 15(2), 143–151. doi:10.1038/ni.2797.

    Article  CAS  PubMed  Google Scholar 

  178. Woodfin, A., Voisin, M. B., Beyrau, M., Colom, B., Caille, D., Diapouli, F. M., et al. (2011). The junctional adhesion molecule JAM-C regulates polarized transendothelial migration of neutrophils in vivo. Nature Immunology, 12(8), 761–769. doi:10.1038/ni.2062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Zhang, D., Chen, G., Manwani, D., Mortha, A., Xu, C., Faith, J. J., et al. (2015). Neutrophil ageing is regulated by the microbiome. Nature, 525(7570), 528–532. doi:10.1038/nature15367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Houghton, A. M. (2010). The paradox of tumor-associated neutrophils: fueling tumor growth with cytotoxic substances. Cell Cycle, 9(9), 1732–1737.

    Article  CAS  PubMed  Google Scholar 

  181. Di Carlo, E., Forni, G., Lollini, P., Colombo, M. P., Modesti, A., & Musiani, P. (2001). The intriguing role of polymorphonuclear neutrophils in antitumor reactions. Blood, 97(2), 339–345.

    Article  CAS  PubMed  Google Scholar 

  182. Piccard, H., Muschel, R. J., & Opdenakker, G. (2012). On the dual roles and polarized phenotypes of neutrophils in tumor development and progression. Critical Reviews in Oncology/Hematology, 82(3), 296–309. doi:10.1016/j.critrevonc.2011.06.004.

    Article  CAS  PubMed  Google Scholar 

  183. Bellocq, A., Antoine, M., Flahault, A., Philippe, C., Crestani, B., Bernaudin, J. F., et al. (1998). Neutrophil alveolitis in bronchioloalveolar carcinoma: induction by tumor-derived interleukin-8 and relation to clinical outcome. The American Journal of Pathology, 152(1), 83–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Fossati, G., Ricevuti, G., Edwards, S. W., Walker, C., Dalton, A., & Rossi, M. L. (1999). Neutrophil infiltration into human gliomas. Acta Neuropathologica, 98(4), 349–354.

    Article  CAS  PubMed  Google Scholar 

  185. Mentzel, T., Brown, L. F., Dvorak, H. F., Kuhnen, C., Stiller, K. J., Katenkamp, D., et al. (2001). The association between tumour progression and vascularity in myxofibrosarcoma and myxoid/round cell liposarcoma. Virchows Archiv, 438(1), 13–22.

    Article  CAS  PubMed  Google Scholar 

  186. Nielsen, B. S., Timshel, S., Kjeldsen, L., Sehested, M., Pyke, C., Borregaard, N., et al. (1996). 92 kDa type IV collagenase (MMP-9) is expressed in neutrophils and macrophages but not in malignant epithelial cells in human colon cancer. International Journal of Cancer, 65(1), 57–62. doi:10.1002/(sici)1097-0215(19960103)65:1<57::aid-ijc10>3.0.co;2-f.

    Article  CAS  PubMed  Google Scholar 

  187. Jensen, H. K., Donskov, F., Marcussen, N., Nordsmark, M., Lundbeck, F., & von der Maase, H. (2009). Presence of intratumoral neutrophils is an independent prognostic factor in localized renal cell carcinoma. Journal of Clinical Oncology, 27(28), 4709–4717. doi:10.1200/jco.2008.18.9498.

    Article  PubMed  Google Scholar 

  188. Trellakis, S., Bruderek, K., Dumitru, C. A., Gholaman, H., Gu, X., Bankfalvi, A., et al. (2011). Polymorphonuclear granulocytes in human head and neck cancer: enhanced inflammatory activity, modulation by cancer cells and expansion in advanced disease. International Journal of Cancer, 129(9), 2183–2193. doi:10.1002/ijc.25892.

    Article  CAS  PubMed  Google Scholar 

  189. Zhou, S. L., Dai, Z., Zhou, Z. J., Wang, X. Y., Yang, G. H., Wang, Z., et al. (2012). Overexpression of CXCL5 mediates neutrophil infiltration and indicates poor prognosis for hepatocellular carcinoma. Hepatology, 56(6), 2242–2254. doi:10.1002/hep.25907.

    Article  CAS  PubMed  Google Scholar 

  190. Zhao, J. J., Pan, K., Wang, W., Chen, J. G., Wu, Y. H., Lv, L., et al. (2012). The prognostic value of tumor-infiltrating neutrophils in gastric adenocarcinoma after resection. PloS One, 7(3), e33655. doi:10.1371/journal.pone.0033655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Akizuki, M., Fukutomi, T., Takasugi, M., Takahashi, S., Sato, T., Harao, M., et al. (2007). Prognostic significance of immunoreactive neutrophil elastase in human breast cancer: long-term follow-up results in 313 patients. Neoplasia, 9(3), 260–264.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Foekens, J. A., Ries, C., Look, M. P., Gippner-Steppert, C., Klijn, J. G., & Jochum, M. (2003). The prognostic value of polymorphonuclear leukocyte elastase in patients with primary breast cancer. Cancer Research, 63(2), 337–341.

    CAS  PubMed  Google Scholar 

  193. Foekens, J. A., Ries, C., Look, M. P., Gippner-Steppert, C., Klijn, J. G., & Jochum, M. (2003). Elevated expression of polymorphonuclear leukocyte elastase in breast cancer tissue is associated with tamoxifen failure in patients with advanced disease. British Journal of Cancer, 88(7), 1084–1090. doi:10.1038/sj.bjc.6600813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Azab, B., Bhatt, V. R., Phookan, J., Murukutla, S., Kohn, N., Terjanian, T., et al. (2012). Usefulness of the neutrophil-to-lymphocyte ratio in predicting short- and long-term mortality in breast cancer patients. Annals of Surgical Oncology, 19(1), 217–224. doi:10.1245/s10434-011-1814-0.

    Article  PubMed  Google Scholar 

  195. Noh, H., Eomm, M., & Han, A. (2013). Usefulness of pretreatment neutrophil to lymphocyte ratio in predicting disease-specific survival in breast cancer patients. Journal of Breast Cancer, 16(1), 55–59. doi:10.4048/jbc.2013.16.1.55.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Templeton, A. J., McNamara, M. G., Seruga, B., Vera-Badillo, F. E., Aneja, P., Ocana, A., et al. (2014). Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis. Journal of the National Cancer Institute, 106(6), dju124. doi:10.1093/jnci/dju124.

    Article  PubMed  CAS  Google Scholar 

  197. Gentles, A. J., Newman, A. M., Liu, C. L., Bratman, S. V., Feng, W., Kim, D., et al. (2015). The prognostic landscape of genes and infiltrating immune cells across human cancers. Nature Medicine, 21(8), 938–945. doi:10.1038/nm.3909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Coussens, L. M., Tinkle, C. L., Hanahan, D., & Werb, Z. (2000). MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell, 103(3), 481–490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Wada, Y., Yoshida, K., Tsutani, Y., Shigematsu, H., Oeda, M., Sanada, Y., et al. (2007). Neutrophil elastase induces cell proliferation and migration by the release of TGF-alpha, PDGF and VEGF in esophageal cell lines. Oncology Reports, 17(1), 161–167.

    CAS  PubMed  Google Scholar 

  200. Houghton, A. M., Rzymkiewicz, D. M., Ji, H., Gregory, A. D., Egea, E. E., Metz, H. E., et al. (2010). Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth. Nature Medicine, 16(2), 219–223. doi:10.1038/nm.2084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Tazzyman, S., Niaz, H., & Murdoch, C. (2013). Neutrophil-mediated tumour angiogenesis: subversion of immune responses to promote tumour growth. Seminars in Cancer Biology, 23(3), 149–158. doi:10.1016/j.semcancer.2013.02.003.

    Article  CAS  PubMed  Google Scholar 

  202. Bergers, G., Brekken, R., McMahon, G., Vu, T. H., Itoh, T., Tamaki, K., et al. (2000). Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nature Cell Biology, 2(10), 737–744. doi:10.1038/35036374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Nozawa, H., Chiu, C., & Hanahan, D. (2006). Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 103(33), 12493–12498. doi:10.1073/pnas.0601807103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Shojaei, F., Wu, X., Zhong, C., Yu, L., Liang, X. H., Yao, J., et al. (2007). Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature, 450(7171), 825–831. doi:10.1038/nature06348.

    Article  CAS  PubMed  Google Scholar 

  205. Shojaei, F., Singh, M., Thompson, J. D., & Ferrara, N. (2008). Role of Bv8 in neutrophil-dependent angiogenesis in a transgenic model of cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 105(7), 2640–2645. doi:10.1073/pnas.0712185105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Shojaei, F., Wu, X., Qu, X., Kowanetz, M., Yu, L., Tan, M., et al. (2009). G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proceedings of the National Academy of Sciences of the United States of America, 106(16), 6742–6747. doi:10.1073/pnas.0902280106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Queen, M. M., Ryan, R. E., Holzer, R. G., Keller-Peck, C. R., & Jorcyk, C. L. (2005). Breast cancer cells stimulate neutrophils to produce oncostatin M: potential implications for tumor progression. Cancer Research, 65(19), 8896–8904. doi:10.1158/0008-5472.can-05-1734.

    Article  CAS  PubMed  Google Scholar 

  208. Strell, C., Lang, K., Niggemann, B., Zaenker, K. S., & Entschladen, F. (2010). Neutrophil granulocytes promote the migratory activity of MDA-MB-468 human breast carcinoma cells via ICAM-1. Experimental Cell Research, 316(1), 138–148. doi:10.1016/j.yexcr.2009.09.003.

    Article  CAS  PubMed  Google Scholar 

  209. Wu, Y., Zhao, Q., Peng, C., Sun, L., Li, X. F., & Kuang, D. M. (2011). Neutrophils promote motility of cancer cells via a hyaluronan-mediated TLR4/PI3K activation loop. The Journal of Pathology, 225(3), 438–447. doi:10.1002/path.2947.

    Article  CAS  PubMed  Google Scholar 

  210. Grosse-Steffen, T., Giese, T., Giese, N., Longerich, T., Schirmacher, P., Hansch, G. M., et al. (2012). Epithelial-to-mesenchymal transition in pancreatic ductal adenocarcinoma and pancreatic tumor cell lines: the role of neutrophils and neutrophil-derived elastase. Clinical & Developmental Immunology, 2012, 720768. doi:10.1155/2012/720768.

    Article  CAS  Google Scholar 

  211. Bekes, E. M., Schweighofer, B., Kupriyanova, T. A., Zajac, E., Ardi, V. C., Quigley, J. P., et al. (2011). Tumor-recruited neutrophils and neutrophil TIMP-free MMP-9 regulate coordinately the levels of tumor angiogenesis and efficiency of malignant cell intravasation. The American Journal of Pathology, 179(3), 1455–1470. doi:10.1016/j.ajpath.2011.05.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Wu, Q. D., Wang, J. H., Condron, C., Bouchier-Hayes, D., & Redmond, H. P. (2001). Human neutrophils facilitate tumor cell transendothelial migration. American Journal of Physiology. Cell Physiology, 280(4), C814–C822.

    CAS  PubMed  Google Scholar 

  213. Huh, S. J., Liang, S., Sharma, A., Dong, C., & Robertson, G. P. (2010). Transiently entrapped circulating tumor cells interact with neutrophils to facilitate lung metastasis development. Cancer Research, 70(14), 6071–6082. doi:10.1158/0008-5472.can-09-4442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Spicer, J. D., McDonald, B., Cools-Lartigue, J. J., Chow, S. C., Giannias, B., Kubes, P., et al. (2012). Neutrophils promote liver metastasis via Mac-1-mediated interactions with circulating tumor cells. Cancer Research, 72(16), 3919–3927. doi:10.1158/0008-5472.can-11-2393.

    Article  CAS  PubMed  Google Scholar 

  215. Coffelt, S. B., Kersten, K., Doornebal, C. W., Weiden, J., Vrijland, K., Hau, C. S., et al. (2015). IL-17-producing gammadelta T cells and neutrophils conspire to promote breast cancer metastasis. Nature, 522(7556), 345–348. doi:10.1038/nature14282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Kowanetz, M., Wu, X., Lee, J., Tan, M., Hagenbeek, T., Qu, X., et al. (2010). Granulocyte-colony stimulating factor promotes lung metastasis through mobilization of Ly6G+Ly6C+ granulocytes. Proceedings of the National Academy of Sciences of the United States of America, 107(50), 21248–21255. doi:10.1073/pnas.1015855107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Cassatella, M. A., Locati, M., & Mantovani, A. (2009). Never underestimate the power of a neutrophil. Immunity, 31(5), 698–700. doi:10.1016/j.immuni.2009.10.003.

    Article  CAS  PubMed  Google Scholar 

  218. Zhang, X., Majlessi, L., Deriaud, E., Leclerc, C., & Lo-Man, R. (2009). Coactivation of Syk kinase and MyD88 adaptor protein pathways by bacteria promotes regulatory properties of neutrophils. Immunity, 31(5), 761–771. doi:10.1016/j.immuni.2009.09.016.

    Article  CAS  PubMed  Google Scholar 

  219. Fridlender, Z. G., Sun, J., Kim, S., Kapoor, V., Cheng, G., Ling, L., et al. (2009). Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell, 16(3), 183–194. doi:10.1016/j.ccr.2009.06.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Jablonska, J., Leschner, S., Westphal, K., Lienenklaus, S., & Weiss, S. (2010). Neutrophils responsive to endogenous IFN-beta regulate tumor angiogenesis and growth in a mouse tumor model. The Journal of Clinical Investigation, 120(4), 1151–1164. doi:10.1172/jci37223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Mittendorf, E. A., Alatrash, G., Qiao, N., Wu, Y., Sukhumalchandra, P., St John, L. S., et al. (2012). Breast cancer cell uptake of the inflammatory mediator neutrophil elastase triggers an anticancer adaptive immune response. Cancer Research, 72(13), 3153–3162. doi:10.1158/0008-5472.can-11-4135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Leifler, K. S., Svensson, S., Abrahamsson, A., Bendrik, C., Robertson, J., Gauldie, J., et al. (2013). Inflammation induced by MMP-9 enhances tumor regression of experimental breast cancer. Journal of Immunology, 190(8), 4420–4430. doi:10.4049/jimmunol.1202610.

    Article  CAS  Google Scholar 

  223. Granot, Z., Henke, E., Comen, E. A., King, T. A., Norton, L., & Benezra, R. (2011). Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell, 20(3), 300–314. doi:10.1016/j.ccr.2011.08.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Haqqani, A. S., Sandhu, J. K., & Birnboim, H. C. (2000). Expression of interleukin-8 promotes neutrophil infiltration and genetic instability in mutatect tumors. Neoplasia, 2(6), 561–568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Finisguerra, V., Di Conza, G., Di Matteo, M., Serneels, J., Costa, S., Thompson, A. A., et al. (2015). MET is required for the recruitment of anti-tumoural neutrophils. Nature, 522(7556), 349–353. doi:10.1038/nature14407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Schaider, H., Oka, M., Bogenrieder, T., Nesbit, M., Satyamoorthy, K., Berking, C., et al. (2003). Differential response of primary and metastatic melanomas to neutrophils attracted by IL-8. International Journal of Cancer, 103(3), 335–343. doi:10.1002/ijc.10775.

    Article  CAS  PubMed  Google Scholar 

  227. Musiani, P., Modesti, A., Giovarelli, M., Cavallo, F., Colombo, M. P., Lollini, P. L., et al. (1997). Cytokines, tumour-cell death and immunogenicity: a question of choice. Immunology Today, 18(1), 32–36.

    Article  CAS  PubMed  Google Scholar 

  228. Buonocore, S., Haddou, N. O., Moore, F., Florquin, S., Paulart, F., Heirman, C., et al. (2008). Neutrophil-dependent tumor rejection and priming of tumoricidal CD8+ T cell response induced by dendritic cells overexpressing CD95L. Journal of Leukocyte Biology, 84(3), 713–720. doi:10.1189/jlb.0108075.

    Article  CAS  PubMed  Google Scholar 

  229. Talmadge, J. E., & Gabrilovich, D. I. (2013). History of myeloid-derived suppressor cells. Nature Reviews. Cancer, 13(10), 739–752. doi:10.1038/nrc3581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Gabrilovich, D. I., & Nagaraj, S. (2009). Myeloid-derived suppressor cells as regulators of the immune system. Nature Reviews. Immunology, 9(3), 162–174. doi:10.1038/nri2506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Ostrand-Rosenberg, S., & Sinha, P. (2009). Myeloid-derived suppressor cells: linking inflammation and cancer. Journal of Immunology, 182(8), 4499–4506. doi:10.4049/jimmunol.0802740.

    Article  CAS  Google Scholar 

  232. Van Ginderachter, J. A., Beschin, A., De Baetselier, P., & Raes, G. (2010). Myeloid-derived suppressor cells in parasitic infections. European Journal of Immunology, 40(11), 2976–2985. doi:10.1002/eji.201040911.

    Article  CAS  PubMed  Google Scholar 

  233. Cuenca, A. G., Delano, M. J., Kelly-Scumpia, K. M., Moreno, C., Scumpia, P. O., Laface, D. M., et al. (2011). A paradoxical role for myeloid-derived suppressor cells in sepsis and trauma. Molecular Medicine, 17(3–4), 281–292. doi:10.2119/molmed.2010.00178.

    CAS  PubMed  Google Scholar 

  234. Cripps, J. G., & Gorham, J. D. (2011). MDSC in autoimmunity. International Immunopharmacology, 11(7), 789–793. doi:10.1016/j.intimp.2011.01.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Haile, L. A., von Wasielewski, R., Gamrekelashvili, J., Kruger, C., Bachmann, O., Westendorf, A. M., et al. (2008). Myeloid-derived suppressor cells in inflammatory bowel disease: a new immunoregulatory pathway. Gastroenterology, 135(3), 871–881 881.e871-875. doi:10.1053/j.gastro.2008.06.032.

    Article  CAS  PubMed  Google Scholar 

  236. Markowitz, J., Wesolowski, R., Papenfuss, T., Brooks, T. R., & Carson 3rd, W. E. (2013). Myeloid-derived suppressor cells in breast cancer. Breast Cancer Research and Treatment, 140(1), 13–21. doi:10.1007/s10549-013-2618-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Talmadge, J. E. (2007). Pathways mediating the expansion and immunosuppressive activity of myeloid-derived suppressor cells and their relevance to cancer therapy. Clinical Cancer Research, 13(18 Pt 1), 5243–5248. doi:10.1158/1078-0432.ccr-07-0182.

    Article  CAS  PubMed  Google Scholar 

  238. Ko, J. S., Bukowski, R. M., & Fincke, J. H. (2009). Myeloid-derived suppressor cells: a novel therapeutic target. Current Oncology Reports, 11(2), 87–93.

    Article  CAS  PubMed  Google Scholar 

  239. Youn, J. I., & Gabrilovich, D. I. (2010). The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity. European Journal of Immunology, 40(11), 2969–2975. doi:10.1002/eji.201040895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Solito, S., Marigo, I., Pinton, L., Damuzzo, V., Mandruzzato, S., & Bronte, V. (2014). Myeloid-derived suppressor cell heterogeneity in human cancers. Annals of the New York Academy of Sciences, 1319, 47–65. doi:10.1111/nyas.12469.

    Article  CAS  PubMed  Google Scholar 

  241. Diaz-Montero, C. M., Salem, M. L., Nishimura, M. I., Garrett-Mayer, E., Cole, D. J., & Montero, A. J. (2009). Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunology, Immunotherapy, 58(1), 49–59. doi:10.1007/s00262-008-0523-4.

    Article  CAS  PubMed  Google Scholar 

  242. Almand, B., Resser, J. R., Lindman, B., Nadaf, S., Clark, J. I., Kwon, E. D., et al. (2000). Clinical significance of defective dendritic cell differentiation in cancer. Clinical Cancer Research, 6(5), 1755–1766.

    CAS  PubMed  Google Scholar 

  243. Youn, J. I., Collazo, M., Shalova, I. N., Biswas, S. K., & Gabrilovich, D. I. (2012). Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. Journal of Leukocyte Biology, 91(1), 167–181. doi:10.1189/jlb.0311177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Nagaraj, S., & Gabrilovich, D. I. (2010). Myeloid-derived suppressor cells in human cancer. Cancer Journal, 16(4), 348–353. doi:10.1097/PPO.0b013e3181eb3358.

    Article  CAS  Google Scholar 

  245. Almand, B., Clark, J. I., Nikitina, E., van Beynen, J., English, N. R., Knight, S. C., et al. (2001). Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. Journal of Immunology, 166(1), 678–689.

    Article  CAS  Google Scholar 

  246. Peranzoni, E., Zilio, S., Marigo, I., Dolcetti, L., Zanovello, P., Mandruzzato, S., et al. (2010). Myeloid-derived suppressor cell heterogeneity and subset definition. Current Opinion in Immunology, 22(2), 238–244. doi:10.1016/j.coi.2010.01.021.

    Article  CAS  PubMed  Google Scholar 

  247. Nagaraj, S., Gupta, K., Pisarev, V., Kinarsky, L., Sherman, S., Kang, L., et al. (2007). Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nature Medicine, 13(7), 828–835. doi:10.1038/nm1609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Movahedi, K., Guilliams, M., Van den Bossche, J., Van den Bergh, R., Gysemans, C., Beschin, A., et al. (2008). Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood, 111(8), 4233–4244. doi:10.1182/blood-2007-07-099226.

    Article  CAS  PubMed  Google Scholar 

  249. Dolcetti, L., Peranzoni, E., Ugel, S., Marigo, I., Fernandez Gomez, A., Mesa, C., et al. (2010). Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. European Journal of Immunology, 40(1), 22–35. doi:10.1002/eji.200939903.

    Article  CAS  PubMed  Google Scholar 

  250. Youn, J. I., Nagaraj, S., Collazo, M., & Gabrilovich, D. I. (2008). Subsets of myeloid-derived suppressor cells in tumor-bearing mice. Journal of Immunology, 181(8), 5791–5802.

    Article  CAS  Google Scholar 

  251. Raber, P., Ochoa, A. C., & Rodriguez, P. C. (2012). Metabolism of L-arginine by myeloid-derived suppressor cells in cancer: mechanisms of T cell suppression and therapeutic perspectives. Immunological Investigations, 41(6–7), 614–634. doi:10.3109/08820139.2012.680634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Solito, S., Bronte, V., & Mandruzzato, S. (2011). Antigen specificity of immune suppression by myeloid-derived suppressor cells. Journal of Leukocyte Biology, 90(1), 31–36. doi:10.1189/jlb.0111021.

    Article  CAS  PubMed  Google Scholar 

  253. Nagaraj, S., Schrum, A. G., Cho, H. I., Celis, E., & Gabrilovich, D. I. (2010). Mechanism of T cell tolerance induced by myeloid-derived suppressor cells. Journal of Immunology, 184(6), 3106–3116. doi:10.4049/jimmunol.0902661.

    Article  CAS  Google Scholar 

  254. Ezernitchi, A. V., Vaknin, I., Cohen-Daniel, L., Levy, O., Manaster, E., Halabi, A., et al. (2006). TCR zeta down-regulation under chronic inflammation is mediated by myeloid suppressor cells differentially distributed between various lymphatic organs. Journal of Immunology, 177(7), 4763–4772.

    Article  CAS  Google Scholar 

  255. Mazzoni, A., Bronte, V., Visintin, A., Spitzer, J. H., Apolloni, E., Serafini, P., et al. (2002). Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. Journal of Immunology, 168(2), 689–695.

    Article  CAS  Google Scholar 

  256. Lu, T., Ramakrishnan, R., Altiok, S., Youn, J. I., Cheng, P., Celis, E., et al. (2011). Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. The Journal of Clinical Investigation, 121(10), 4015–4029. doi:10.1172/jci45862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Rodriguez, P. C., Quiceno, D. G., Zabaleta, J., Ortiz, B., Zea, A. H., Piazuelo, M. B., et al. (2004). Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Research, 64(16), 5839–5849. doi:10.1158/0008-5472.can-04-0465.

    Article  CAS  PubMed  Google Scholar 

  258. Srivastava, M. K., Sinha, P., Clements, V. K., Rodriguez, P., & Ostrand-Rosenberg, S. (2010). Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Research, 70(1), 68–77. doi:10.1158/0008-5472.can-09-2587.

    Article  CAS  PubMed  Google Scholar 

  259. Hanson, E. M., Clements, V. K., Sinha, P., Ilkovitch, D., & Ostrand-Rosenberg, S. (2009). Myeloid-derived suppressor cells down-regulate L-selectin expression on CD4+ and CD8+ T cells. Journal of Immunology, 183(2), 937–944. doi:10.4049/jimmunol.0804253.

    Article  CAS  Google Scholar 

  260. Molon, B., Ugel, S., Del Pozzo, F., Soldani, C., Zilio, S., Avella, D., et al. (2011). Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. The Journal of Experimental Medicine, 208(10), 1949–1962. doi:10.1084/jem.20101956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Li, H., Han, Y., Guo, Q., Zhang, M., & Cao, X. (2009). Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. Journal of Immunology, 182(1), 240–249.

    Article  CAS  Google Scholar 

  262. Liu, C., Yu, S., Kappes, J., Wang, J., Grizzle, W. E., Zinn, K. R., et al. (2007). Expansion of spleen myeloid suppressor cells represses NK cell cytotoxicity in tumor-bearing host. Blood, 109(10), 4336–4342. doi:10.1182/blood-2006-09-046201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Elkabets, M., Ribeiro, V. S., Dinarello, C. A., Ostrand-Rosenberg, S., Di Santo, J. P., Apte, R. N., et al. (2010). IL-1beta regulates a novel myeloid-derived suppressor cell subset that impairs NK cell development and function. European Journal of Immunology, 40(12), 3347–3357. doi:10.1002/eji.201041037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Ostrand-Rosenberg, S., Sinha, P., Beury, D. W., & Clements, V. K. (2012). Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression. Seminars in Cancer Biology, 22(4), 275–281. doi:10.1016/j.semcancer.2012.01.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Ma, G., Pan, P. Y., Eisenstein, S., Divino, C. M., Lowell, C. A., Takai, T., et al. (2011). Paired immunoglobin-like receptor-B regulates the suppressive function and fate of myeloid-derived suppressor cells. Immunity, 34(3), 385–395. doi:10.1016/j.immuni.2011.02.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Huang, B., Pan, P. Y., Li, Q., Sato, A. I., Levy, D. E., Bromberg, J., et al. (2006). Gr-1 + CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Research, 66(2), 1123–1131. doi:10.1158/0008-5472.can-05-1299.

    Article  CAS  PubMed  Google Scholar 

  267. Brandau, S., Moses, K., & Lang, S. (2013). The kinship of neutrophils and granulocytic myeloid-derived suppressor cells in cancer: cousins, siblings or twins? Seminars in Cancer Biology, 23(3), 171–182. doi:10.1016/j.semcancer.2013.02.007.

    Article  CAS  PubMed  Google Scholar 

  268. Yang, L., DeBusk, L. M., Fukuda, K., Fingleton, B., Green-Jarvis, B., Shyr, Y., et al. (2004). Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell, 6(4), 409–421. doi:10.1016/j.ccr.2004.08.031.

    Article  CAS  PubMed  Google Scholar 

  269. Boelte, K. C., Gordy, L. E., Joyce, S., Thompson, M. A., Yang, L., & Lin, P. C. (2011). Rgs2 mediates pro-angiogenic function of myeloid derived suppressor cells in the tumor microenvironment via upregulation of MCP-1. PloS One, 6(4), e18534. doi:10.1371/journal.pone.0018534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Ahn, G. O., & Brown, J. M. (2008). Matrix metalloproteinase-9 is required for tumor vasculogenesis but not for angiogenesis: role of bone marrow-derived myelomonocytic cells. Cancer Cell, 13(3), 193–205. doi:10.1016/j.ccr.2007.11.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Finke, J., Ko, J., Rini, B., Rayman, P., Ireland, J., & Cohen, P. (2011). MDSC as a mechanism of tumor escape from sunitinib mediated anti-angiogenic therapy. International Immunopharmacology, 11(7), 856–861. doi:10.1016/j.intimp.2011.01.030.

    Article  CAS  PubMed  Google Scholar 

  272. Yang, L., Huang, J., Ren, X., Gorska, A. E., Chytil, A., Aakre, M., et al. (2008). Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell, 13(1), 23–35. doi:10.1016/j.ccr.2007.12.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Kitamura, T., Kometani, K., Hashida, H., Matsunaga, A., Miyoshi, H., Hosogi, H., et al. (2007). SMAD4-deficient intestinal tumors recruit CCR1+ myeloid cells that promote invasion. Nature Genetics, 39(4), 467–475. doi:10.1038/ng1997.

    Article  CAS  PubMed  Google Scholar 

  274. Toh, B., Wang, X., Keeble, J., Sim, W. J., Khoo, K., Wong, W. C., et al. (2011). Mesenchymal transition and dissemination of cancer cells is driven by myeloid-derived suppressor cells infiltrating the primary tumor. PLoS Biology, 9(9), e1001162. doi:10.1371/journal.pbio.1001162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Gao, D., Joshi, N., Choi, H., Ryu, S., Hahn, M., Catena, R., et al. (2012). Myeloid progenitor cells in the premetastatic lung promote metastases by inducing mesenchymal to epithelial transition. Cancer Research, 72(6), 1384–1394. doi:10.1158/0008-5472.can-11-2905.

    Article  CAS  PubMed  Google Scholar 

  276. Erler, J. T., Bennewith, K. L., Cox, T. R., Lang, G., Bird, D., Koong, A., et al. (2009). Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell, 15(1), 35–44. doi:10.1016/j.ccr.2008.11.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Hiratsuka, S., Watanabe, A., Aburatani, H., & Maru, Y. (2006). Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nature Cell Biology, 8(12), 1369–1375. doi:10.1038/ncb1507.

    Article  CAS  PubMed  Google Scholar 

  278. Kaplan, R. N., Riba, R. D., Zacharoulis, S., Bramley, A. H., Vincent, L., Costa, C., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438(7069), 820–827. doi:10.1038/nature04186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Yan, H. H., Pickup, M., Pang, Y., Gorska, A. E., Li, Z., Chytil, A., et al. (2010). Gr-1+CD11b+ myeloid cells tip the balance of immune protection to tumor promotion in the premetastatic lung. Cancer Research, 70(15), 6139–6149. doi:10.1158/0008-5472.can-10-0706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Sceneay, J., Chow, M. T., Chen, A., Halse, H. M., Wong, C. S., Andrews, D. M., et al. (2012). Primary tumor hypoxia recruits CD11b+/Ly6Cmed/Ly6G+ immune suppressor cells and compromises NK cell cytotoxicity in the premetastatic niche. Cancer Research, 72(16), 3906–3911. doi:10.1158/0008-5472.can-11-3873.

    Article  CAS  PubMed  Google Scholar 

  281. Shojaei, F., Wu, X., Malik, A. K., Zhong, C., Baldwin, M. E., Schanz, S., et al. (2007). Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nature Biotechnology, 25(8), 911–920. doi:10.1038/nbt1323.

    Article  CAS  PubMed  Google Scholar 

  282. Bruchard, M., Mignot, G., Derangere, V., Chalmin, F., Chevriaux, A., Vegran, F., et al. (2013). Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nature Medicine, 19(1), 57–64. doi:10.1038/nm.2999.

    Article  CAS  PubMed  Google Scholar 

  283. Acharyya, S., Oskarsson, T., Vanharanta, S., Malladi, S., Kim, J., Morris, P. G., et al. (2012). A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell, 150(1), 165–178. doi:10.1016/j.cell.2012.04.042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Lilla, J. N., & Werb, Z. (2010). Mast cells contribute to the stromal microenvironment in mammary gland branching morphogenesis. Developmental Biology, 337(1), 124–133. doi:10.1016/j.ydbio.2009.10.021.

    Article  CAS  PubMed  Google Scholar 

  285. Gouon-Evans, V., Rothenberg, M. E., & Pollard, J. W. (2000). Postnatal mammary gland development requires macrophages and eosinophils. Development, 127(11), 2269–2282.

    CAS  PubMed  Google Scholar 

  286. Gyorki, D. E., Asselin-Labat, M. L., van Rooijen, N., Lindeman, G. J., & Visvader, J. E. (2009). Resident macrophages influence stem cell activity in the mammary gland. Breast Cancer Research, 11(4), R62. doi:10.1186/bcr2353.

    Article  PubMed  PubMed Central  Google Scholar 

  287. Ziv, Y., Ron, N., Butovsky, O., Landa, G., Sudai, E., Greenberg, N., et al. (2006). Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nature Neuroscience, 9(2), 268–275. doi:10.1038/nn1629.

    Article  CAS  PubMed  Google Scholar 

  288. Chow, A., Huggins, M., Ahmed, J., Hashimoto, D., Lucas, D., Kunisaki, Y., et al. (2013). CD169(+) macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nature Medicine, 19(4), 429–436. doi:10.1038/nm.3057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Burzyn, D., Kuswanto, W., Kolodin, D., Shadrach, J. L., Cerletti, M., Jang, Y., et al. (2013). A special population of regulatory T cells potentiates muscle repair. Cell, 155(6), 1282–1295. doi:10.1016/j.cell.2013.10.054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Pull, S. L., Doherty, J. M., Mills, J. C., Gordon, J. I., & Stappenbeck, T. S. (2005). Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury. Proceedings of the National Academy of Sciences of the United States of America, 102(1), 99–104. doi:10.1073/pnas.0405979102.

    Article  CAS  PubMed  Google Scholar 

  291. Welte, T., Kim, I. S., Tian, L., Gao, X., Wang, H., Li, J., et al. (2016). Oncogenic mTOR signalling recruits myeloid-derived suppressor cells to promote tumour initiation. Nature Cell Biology, 18(6), 632–644. doi:10.1038/ncb3355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Zhou, W., Ke, S. Q., Huang, Z., Flavahan, W., Fang, X., Paul, J., et al. (2015). Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth. Nature Cell Biology, 17(2), 170–182. doi:10.1038/ncb3090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Cui, T. X., Kryczek, I., Zhao, L., Zhao, E., Kuick, R., Roh, M. H., et al. (2013). Myeloid-derived suppressor cells enhance stemness of cancer cells by inducing microRNA101 and suppressing the corepressor CtBP2. Immunity, 39(3), 611–621. doi:10.1016/j.immuni.2013.08.025.

    Article  CAS  PubMed  Google Scholar 

  294. Corzo, C. A., Condamine, T., Lu, L., Cotter, M. J., Youn, J. I., Cheng, P., et al. (2010). HIF-1alpha regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. The Journal of Experimental Medicine, 207(11), 2439–2453. doi:10.1084/jem.20100587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Sawant, A., Deshane, J., Jules, J., Lee, C. M., Harris, B. A., Feng, X., et al. (2013). Myeloid-derived suppressor cells function as novel osteoclast progenitors enhancing bone loss in breast cancer. Cancer Research, 73(2), 672–682. doi:10.1158/0008-5472.can-12-2202.

    Article  CAS  PubMed  Google Scholar 

  296. Danilin, S., Merkel, A. R., Johnson, J. R., Johnson, R. W., Edwards, J. R., & Sterling, J. A. (2012). Myeloid-derived suppressor cells expand during breast cancer progression and promote tumor-induced bone destruction. Oncoimmunology, 1(9), 1484–1494. doi:10.4161/onci.21990.

    Article  PubMed  PubMed Central  Google Scholar 

  297. Zhuang, J., Zhang, J., Lwin, S. T., Edwards, J. R., Edwards, C. M., Mundy, G. R., et al. (2012). Osteoclasts in multiple myeloma are derived from Gr-1+CD11b+myeloid-derived suppressor cells. PloS One, 7(11), e48871. doi:10.1371/journal.pone.0048871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Youn, J. I., Kumar, V., Collazo, M., Nefedova, Y., Condamine, T., Cheng, P., et al. (2013). Epigenetic silencing of retinoblastoma gene regulates pathologic differentiation of myeloid cells in cancer. Nature Immunology, 14(3), 211–220. doi:10.1038/ni.2526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Burrell, R. A., McGranahan, N., Bartek, J., & Swanton, C. (2013). The causes and consequences of genetic heterogeneity in cancer evolution. Nature, 501(7467), 338–345. doi:10.1038/nature12625.

    Article  CAS  PubMed  Google Scholar 

  300. Marusyk, A., Almendro, V., & Polyak, K. (2012). Intra-tumour heterogeneity: a looking glass for cancer? Nature Reviews. Cancer, 12(5), 323–334. doi:10.1038/nrc3261.

    Article  CAS  PubMed  Google Scholar 

  301. Junttila, M. R., & de Sauvage, F. J. (2013). Influence of tumour micro-environment heterogeneity on therapeutic response. Nature, 501(7467), 346–354. doi:10.1038/nature12626.

    Article  CAS  PubMed  Google Scholar 

  302. Bedard, P. L., Hansen, A. R., Ratain, M. J., & Siu, L. L. (2013). Tumour heterogeneity in the clinic. Nature, 501(7467), 355–364. doi:10.1038/nature12627.

    Article  CAS  PubMed  Google Scholar 

  303. Zardavas, D., Irrthum, A., Swanton, C., & Piccart, M. (2015). Clinical management of breast cancer heterogeneity. Nature Reviews. Clinical Oncology, 12(7), 381–394. doi:10.1038/nrclinonc.2015.73.

    Article  CAS  PubMed  Google Scholar 

  304. Vogelstein, B., Papadopoulos, N., Velculescu, V. E., Zhou, S., Diaz Jr., L. A., & Kinzler, K. W. (2013). Cancer genome landscapes. Science, 339(6127), 1546–1558. doi:10.1126/science.1235122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Aurilio, G., Disalvatore, D., Pruneri, G., Bagnardi, V., Viale, G., Curigliano, G., et al. (2014). A meta-analysis of oestrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 discordance between primary breast cancer and metastases. European Journal of Cancer, 50(2), 277–289. doi:10.1016/j.ejca.2013.10.004.

    Article  CAS  PubMed  Google Scholar 

  306. Lehmann, B. D., Bauer, J. A., Chen, X., Sanders, M. E., Chakravarthy, A. B., Shyr, Y., et al. (2011). Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. The Journal of Clinical Investigation, 121(7), 2750–2767. doi:10.1172/jci45014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Stephens, P. J., Tarpey, P. S., Davies, H., Van Loo, P., Greenman, C., Wedge, D. C., et al. (2012). The landscape of cancer genes and mutational processes in breast cancer. Nature, 486(7403), 400–404. doi:10.1038/nature11017.

    CAS  PubMed  PubMed Central  Google Scholar 

  308. Banerji, S., Cibulskis, K., Rangel-Escareno, C., Brown, K. K., Carter, S. L., Frederick, A. M., et al. (2012). Sequence analysis of mutations and translocations across breast cancer subtypes. Nature, 486(7403), 405–409. doi:10.1038/nature11154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Fridman, W. H., Pages, F., Sautes-Fridman, C., & Galon, J. (2012). The immune contexture in human tumours: impact on clinical outcome. Nature Reviews. Cancer, 12(4), 298–306. doi:10.1038/nrc3245.

    Article  CAS  PubMed  Google Scholar 

  310. Finak, G., Bertos, N., Pepin, F., Sadekova, S., Souleimanova, M., Zhao, H., et al. (2008). Stromal gene expression predicts clinical outcome in breast cancer. Nature Medicine, 14(5), 518–527. doi:10.1038/nm1764.

    Article  CAS  PubMed  Google Scholar 

  311. Teschendorff, A. E., Miremadi, A., Pinder, S. E., Ellis, I. O., & Caldas, C. (2007). An immune response gene expression module identifies a good prognosis subtype in estrogen receptor negative breast cancer. Genome Biology, 8(8), R157. doi:10.1186/gb-2007-8-8-r157.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  312. Farmer, P., Bonnefoi, H., Anderle, P., Cameron, D., Wirapati, P., Becette, V., et al. (2009). A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nature Medicine, 15(1), 68–74. doi:10.1038/nm.1908.

    Article  CAS  PubMed  Google Scholar 

  313. Bergamaschi, A., Tagliabue, E., Sorlie, T., Naume, B., Triulzi, T., Orlandi, R., et al. (2008). Extracellular matrix signature identifies breast cancer subgroups with different clinical outcome. The Journal of Pathology, 214(3), 357–367. doi:10.1002/path.2278.

    Article  CAS  PubMed  Google Scholar 

  314. Bindea, G., Mlecnik, B., Tosolini, M., Kirilovsky, A., Waldner, M., Obenauf, A. C., et al. (2013). Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity, 39(4), 782–795. doi:10.1016/j.immuni.2013.10.003.

    Article  CAS  PubMed  Google Scholar 

  315. Ruffell, B., Au, A., Rugo, H. S., Esserman, L. J., Hwang, E. S., & Coussens, L. M. (2012). Leukocyte composition of human breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 109(8), 2796–2801. doi:10.1073/pnas.1104303108.

    Article  CAS  PubMed  Google Scholar 

  316. Balkwill, F. (2004). Cancer and the chemokine network. Nature Reviews. Cancer, 4(7), 540–550. doi:10.1038/nrc1388.

    Article  CAS  PubMed  Google Scholar 

  317. Gajewski, T. F., Schreiber, H., & Fu, Y. X. (2013). Innate and adaptive immune cells in the tumor microenvironment. Nature Immunology, 14(10), 1014–1022. doi:10.1038/ni.2703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Xu, C., Fillmore, C. M., Koyama, S., Wu, H., Zhao, Y., Chen, Z., et al. (2014). Loss of Lkb1 and Pten leads to lung squamous cell carcinoma with elevated PD-L1 expression. Cancer Cell, 25(5), 590–604. doi:10.1016/j.ccr.2014.03.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Sparmann, A., & Bar-Sagi, D. (2004). Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell, 6(5), 447–458. doi:10.1016/j.ccr.2004.09.028.

    Article  CAS  PubMed  Google Scholar 

  320. Ji, H., Houghton, A. M., Mariani, T. J., Perera, S., Kim, C. B., Padera, R., et al. (2006). K-ras activation generates an inflammatory response in lung tumors. Oncogene, 25(14), 2105–2112. doi:10.1038/sj.onc.1209237.

    Article  CAS  PubMed  Google Scholar 

  321. Low-Marchelli, J. M., Ardi, V. C., Vizcarra, E. A., van Rooijen, N., Quigley, J. P., & Yang, J. (2013). Twist1 induces CCL2 and recruits macrophages to promote angiogenesis. Cancer Research, 73(2), 662–671. doi:10.1158/0008-5472.can-12-0653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. Collino, F., Revelli, A., Massobrio, M., Katsaros, D., Schmitt-Ney, M., Camussi, G., et al. (2009). Epithelial-mesenchymal transition of ovarian tumor cells induces an angiogenic monocyte cell population. Experimental Cell Research, 315(17), 2982–2994. doi:10.1016/j.yexcr.2009.06.010.

    Article  CAS  PubMed  Google Scholar 

  323. Soucek, L., Lawlor, E. R., Soto, D., Shchors, K., Swigart, L. B., & Evan, G. I. (2007). Mast cells are required for angiogenesis and macroscopic expansion of Myc-induced pancreatic islet tumors. Nature Medicine, 13(10), 1211–1218. doi:10.1038/nm1649.

    Article  CAS  PubMed  Google Scholar 

  324. Borrello, M. G., Alberti, L., Fischer, A., Degl’innocenti, D., Ferrario, C., Gariboldi, M., et al. (2005). Induction of a proinflammatory program in normal human thyrocytes by the RET/PTC1 oncogene. Proceedings of the National Academy of Sciences of the United States of America, 102(41), 14825–14830. doi:10.1073/pnas.0503039102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. Ueda, H., Howson, J. M., Esposito, L., Heward, J., Snook, H., Chamberlain, G., et al. (2003). Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature, 423(6939), 506–511. doi:10.1038/nature01621.

    Article  CAS  PubMed  Google Scholar 

  326. Heinz, S., Romanoski, C. E., Benner, C., Allison, K. A., Kaikkonen, M. U., Orozco, L. D., et al. (2013). Effect of natural genetic variation on enhancer selection and function. Nature, 503(7477), 487–492. doi:10.1038/nature12615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Brodin, P., Jojic, V., Gao, T., Bhattacharya, S., Angel, C. J., Furman, D., et al. (2015). Variation in the human immune system is largely driven by non-heritable influences. Cell, 160(1–2), 37–47. doi:10.1016/j.cell.2014.12.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Polyak, K., Haviv, I., & Campbell, I. G. (2009). Co-evolution of tumor cells and their microenvironment. Trends in Genetics, 25(1), 30–38. doi:10.1016/j.tig.2008.10.012.

    Article  CAS  PubMed  Google Scholar 

  329. Anderson, A. R., Weaver, A. M., Cummings, P. T., & Quaranta, V. (2006). Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell, 127(5), 905–915. doi:10.1016/j.cell.2006.09.042.

    Article  CAS  PubMed  Google Scholar 

  330. Lu, H., Clauser, K. R., Tam, W. L., Frose, J., Ye, X., Eaton, E. N., et al. (2014). A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nature Cell Biology, 16(11), 1105–1117. doi:10.1038/ncb3041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Oshimori, N., Oristian, D., & Fuchs, E. (2015). TGF-beta promotes heterogeneity and drug resistance in squamous cell carcinoma. Cell, 160(5), 963–976. doi:10.1016/j.cell.2015.01.043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Pfefferle, A. D., Herschkowitz, J. I., Usary, J., Harrell, J. C., Spike, B. T., Adams, J. R., et al. (2013). Transcriptomic classification of genetically engineered mouse models of breast cancer identifies human subtype counterparts. Genome Biology, 14(11), R125. doi:10.1186/gb-2013-14-11-r125.

    Article  PubMed  PubMed Central  Google Scholar 

  333. Gould, S. E., Junttila, M. R., & de Sauvage, F. J. (2015). Translational value of mouse models in oncology drug development. Nature Medicine, 21(5), 431–439. doi:10.1038/nm.3853.

    Article  CAS  PubMed  Google Scholar 

  334. Herschkowitz, J. I., Zhao, W., Zhang, M., Usary, J., Murrow, G., Edwards, D., et al. (2012). Comparative oncogenomics identifies breast tumors enriched in functional tumor-initiating cells. Proceedings of the National Academy of Sciences of the United States of America, 109(8), 2778–2783. doi:10.1073/pnas.1018862108.

    Article  CAS  PubMed  Google Scholar 

  335. Herschkowitz, J. I., Simin, K., Weigman, V. J., Mikaelian, I., Usary, J., Hu, Z., et al. (2007). Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biology, 8(5), R76. doi:10.1186/gb-2007-8-5-r76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  336. Vargo-Gogola, T., & Rosen, J. M. (2007). Modelling breast cancer: one size does not fit all. Nature Reviews. Cancer, 7(9), 659–672. doi:10.1038/nrc2193.

    Article  CAS  PubMed  Google Scholar 

  337. Shultz, L. D., Brehm, M. A., Garcia-Martinez, J. V., & Greiner, D. L. (2012). Humanized mice for immune system investigation: progress, promise and challenges. Nature Reviews. Immunology, 12(11), 786–798. doi:10.1038/nri3311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Jin, K., Teng, L., Shen, Y., He, K., Xu, Z., & Li, G. (2010). Patient-derived human tumour tissue xenografts in immunodeficient mice: a systematic review. Clinical & Translational Oncology, 12(7), 473–480. doi:10.1007/s12094-010-0540-6.

    Article  Google Scholar 

  339. Tentler, J. J., Tan, A. C., Weekes, C. D., Jimeno, A., Leong, S., Pitts, T. M., et al. (2012). Patient-derived tumour xenografts as models for oncology drug development. Nature Reviews. Clinical Oncology, 9(6), 338–350. doi:10.1038/nrclinonc.2012.61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang H.-F. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, I.S., Zhang, X.HF. One microenvironment does not fit all: heterogeneity beyond cancer cells. Cancer Metastasis Rev 35, 601–629 (2016). https://doi.org/10.1007/s10555-016-9643-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-016-9643-z

Keywords

Navigation