Skip to main content
Log in

Post-transcriptional regulation of MTA family by microRNAs in the context of cancer

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are a class of 20–24 nt small non-coding RNAs that regulate a wide range of biological processes through changing the stability and translation of their target messenger RNA (mRNA) genes. Shortly after their identification, many miRNA genes have been found dysregulated in a variety of human cancers, indicating a pathological function of this gene class in mediating cancer progression. Over the past decade, accumulated literature has shown that miRNAs participate in numerous cancer-relevant processes including cell proliferation, apoptosis, differentiation, metabolism, and importantly, metastasis, which accounts for the mortality of approximately 90 % of cancer patients. Several recent publications have linked miRNAs with metastasis-associated protein (MTA) family members. Given the fact that the MTA family members are widely overexpressed in human cancers and their nature of serving as both corepressor and coactivator in gene regulation, it is intriguing to study whether certain miRNAs regulate cancer progression through modulating the expression of MTA family members. In this review, we will focus on recent advances in understanding the regulatory relationship between certain miRNAs and MTA family members.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Eddy, S. R. (2001). Non-coding RNA genes and the modern RNA world. Nature Reviews Genetics, 2(12), 919–929. doi:10.1038/35103511.

    Article  CAS  PubMed  Google Scholar 

  2. Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297.

    Article  CAS  PubMed  Google Scholar 

  3. Bushati, N., & Cohen, S. M. (2007). MicroRNA functions. Annual Review of Cell and Developmental Biology, 23, 175–205. doi:10.1146/annurev.cellbio.23.090506.123406.

    Article  CAS  PubMed  Google Scholar 

  4. Calin, G. A., & Croce, C. M. (2006). MicroRNA signatures in human cancers. Nature Reviews Cancer, 6(11), 857–866. doi:10.1038/nrc1997.

    Article  CAS  PubMed  Google Scholar 

  5. Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D., et al. (2005). MicroRNA expression profiles classify human cancers. Nature, 435(7043), 834–838. doi:10.1038/nature03702.

    Article  CAS  PubMed  Google Scholar 

  6. Sayed, D., & Abdellatif, M. (2011). MicroRNAs in development and disease. Physiological Reviews, 91(3), 827–887. doi:10.1152/physrev.00006.2010.

    Article  CAS  PubMed  Google Scholar 

  7. Esquela-Kerscher, A., & Slack, F. J. (2006). Oncomirs—microRNAs with a role in cancer. Nature Reviews Cancer, 6(4), 259–269. doi:10.1038/nrc1840.

    Article  CAS  PubMed  Google Scholar 

  8. Hammond, S. M. (2007). MicroRNAs as tumor suppressors. Nature Genetics, 39(5), 582–583.

    Article  CAS  PubMed  Google Scholar 

  9. Chen, C. Z. (2005). MicroRNAs as oncogenes and tumor suppressors. New England Journal of Medicine, 353(17), 1768–1771. doi:10.1056/Nejmp058190.

    Article  CAS  PubMed  Google Scholar 

  10. Nicoloso, M. S., Spizzo, R., Shimizu, M., Rossi, S., & Calin, G. A. (2009). MicroRNAs—the micro steering wheel of tumour metastases. Nature Reviews Cancer, 9(4), 293–302. doi:10.1038/nrc2619.

    Article  CAS  PubMed  Google Scholar 

  11. Ma, L., & Weinberg, R. A. (2008). Micromanagers of malignancy: role of microRNAs in regulating metastasis. Trends in Genetics, 24(9), 448–456. doi:10.1016/j.tig.2008.06.004.

    Article  CAS  PubMed  Google Scholar 

  12. Kim, V. N. (2005). MicroRNA biogenesis: coordinated cropping and dicing. Nature Reviews Molecular Cell Biology, 6(5), 376–385. doi:10.1038/nrm1644.

    Article  CAS  PubMed  Google Scholar 

  13. Bartel, D. P. (2009). MicroRNAs: target recognition and regulatory functions. Cell, 136(2), 215–233. doi:10.1016/j.cell.2009.01.002.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Fabian, M. R., & Sonenberg, N. (2012). The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nature Structural and Molecular Biology, 19(6), 586–593. doi:10.1038/nsmb.2296.

    Article  CAS  PubMed  Google Scholar 

  15. Ameres, S. L., & Zamore, P. D. (2013). Diversifying microRNA sequence and function. Nature Reviews Molecular Cell Biology, 14(8), 475–488. doi:10.1038/nrm3611.

    Article  CAS  PubMed  Google Scholar 

  16. Calin, G. A., Sevignani, C., Dan Dumitru, C., Hyslop, T., Noch, E., Yendamuri, S., et al. (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proceedings of the National Academy of Sciences of the United States of America, 101(9), 2999–3004. doi:10.1073/Pnas.0307323101.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Gaur, A., Jewell, D. A., Liang, Y., Ridzon, D., Moore, J. H., Chen, C. F., et al. (2007). Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Research, 67(6), 2456–2468. doi:10.1158/0008-5472.Can-06-2698.

    Article  CAS  PubMed  Google Scholar 

  18. Connolly, E., Melegari, M., Landgraf, P., Tchaikovskaya, T., Tennant, B. C., Slagle, B. L., et al. (2008). Elevated expression of the miR-17-92 polycistron and miR-21 in hepadnavirus-associated hepatocellular carcinoma contributes to the malignant phenotype. American Journal of Pathology, 173(3), 856–864. doi:10.2353/ajpath.2008.080096.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Diosdado, B., van de Wiel, M. A., Terhaar Sive Droste, J. S., Mongera, S., Postma, C., Meijerink, W. J., et al. (2009). MiR-17-92 cluster is associated with 13q gain and c-myc expression during colorectal adenoma to adenocarcinoma progression. British Journal of Cancer, 101(4), 707–714. doi:10.1038/sj.bjc.6605037.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Inomata, M., Tagawa, H., Guo, Y. M., Kameoka, Y., Takahashi, N., & Sawada, K. (2009). MicroRNA-17-92 down-regulates expression of distinct targets in different B-cell lymphoma subtypes. Blood, 113(2), 396–402. doi:10.1182/blood-2008-07-163907.

    Article  CAS  PubMed  Google Scholar 

  21. Mavrakis, K. J., Wolfe, A. L., Oricchio, E., Palomero, T., de Keersmaecker, K., McJunkin, K., et al. (2010). Genome-wide RNA-mediated interference screen identifies miR-19 targets in Notch-induced T-cell acute lymphoblastic leukaemia. Nature Cell Biology, 12(4), 372–379. doi:10.1038/ncb2037.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Huang, G., Nishimoto, K., Zhou, Z., Hughes, D., & Kleinerman, E. S. (2012). miR-20a encoded by the miR-17-92 cluster increases the metastatic potential of osteosarcoma cells by regulating Fas expression. Cancer Research, 72(4), 908–916. doi:10.1158/0008-5472.CAN-11-1460.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Kim, K., Chadalapaka, G., Lee, S. O., Yamada, D., Sastre-Garau, X., Defossez, P. A., et al. (2012). Identification of oncogenic microRNA-17-92/ZBTB4/specificity protein axis in breast cancer. Oncogene, 31(8), 1034–1044. doi:10.1038/onc.2011.296.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. He, L., Thomson, J. M., Hemann, M. T., Hernando-Monge, E., Mu, D., Goodson, S., et al. (2005). A microRNA polycistron as a potential human oncogene. Nature, 435(7043), 828–833. doi:10.1038/Nature03552.

    Article  CAS  PubMed  Google Scholar 

  25. Dews, M., Homayouni, A., Yu, D., Murphy, D., Sevignani, C., Wentzel, E., et al. (2006). Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nature Genetics, 38(9), 1060–1065. doi:10.1038/ng1855.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Johnson, S. M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., et al. (2005). RAS is regulated by the let-7 microRNA family. Cell, 120(5), 635–647. doi:10.1016/J.Cell.2005.01.014.

    Article  CAS  PubMed  Google Scholar 

  27. Chang, T. C., Yu, D., Lee, Y. S., Wentzel, E. A., Arking, D. E., West, K. M., et al. (2008). Widespread microRNA repression by Myc contributes to tumorigenesis. Nature Genetics, 40(1), 43–50. doi:10.1038/ng.2007.30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Ma, L., Teruya-Feldstein, J., & Weinberg, R. A. (2007). Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature, 449(7163), 682–688. doi:10.1038/nature06174.

    Article  CAS  PubMed  Google Scholar 

  29. Gregory, P. A., Bert, A. G., Paterson, E. L., Barry, S. C., Tsykin, A., Farshid, G., et al. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nature Cell Biology, 10(5), 593–601. doi:10.1038/ncb1722.

    Article  CAS  PubMed  Google Scholar 

  30. Tavazoie, S. F., Alarcon, C., Oskarsson, T., Padua, D., Wang, Q. Q., Bos, P. D., et al. (2008). Endogenous human microRNAs that suppress breast cancer metastasis. Nature, 451(7175), 147–152. doi:10.1038/Nature06487.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Zhang, Y., Yang, P., & Wang, X. F. (2014). Microenvironmental regulation of cancer metastasis by miRNAs. Trends in Cell Biology, 24(3), 153–160. doi:10.1016/j.tcb.2013.09.007.

    Article  CAS  PubMed  Google Scholar 

  32. Manavathi, B., & Kumar, R. (2007). Metastasis tumor antigens, an emerging family of multifaceted master coregulators. Journal of Biological Chemistry, 282(3), 1529–1533. doi:10.1074/jbc.R600029200.

    Article  CAS  PubMed  Google Scholar 

  33. Toh, Y., & Nicolson, G. L. (2009). The role of the MTA family and their encoded proteins in human cancers: Molecular functions and clinical implications. Clinical & Experimental Metastasis, 26(3), 215–227. doi:10.1007/s10585-008-9233-8.

    Article  CAS  Google Scholar 

  34. Toh, Y., Pencil, S. D., & Nicolson, G. L. (1994). A novel candidate metastasis-associated gene, MTA1, differentially expressed in highly metastatic mammary adenocarcinoma cell-lines—cDNA cloning, expression, and protein analyses. Journal of Biological Chemistry, 269(37), 22958–22963.

    CAS  PubMed  Google Scholar 

  35. Xue, Y. T., Wong, J. M., Moreno, G. T., Young, M. K., Cote, J., & Wang, W. D. (1998). NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Molecular Cell, 2(6), 851–861. doi:10.1016/s1097-2765(00)80299-3.

    Article  CAS  PubMed  Google Scholar 

  36. Ng, H. H., & Bird, A. (2000). Histone deacetylases: silencers for hire. Trends in Biochemical Sciences, 25(3), 121–126.

    Article  CAS  PubMed  Google Scholar 

  37. Denslow, S. A., & Wade, P. A. (2007). The human Mi-2/NuRD complex and gene regulation. Oncogene, 26(37), 5433–5438. doi:10.1038/sj.onc.1210611.

    Article  CAS  PubMed  Google Scholar 

  38. Bowen, N. J., Fujita, N., Kajita, M., & Wade, P. A. (2004). Mi-2/NuRD: multiple complexes for many purposes. Biochimica Et Biophysica Acta - Gene Structure and Expression, 1677(1–3), 52–57. doi:10.1016/j.bbaexp.2003.10.010.

    Article  CAS  Google Scholar 

  39. Li, D. Q., Pakala, S. B., Nair, S. S., Eswaran, J., & Kumar, R. (2012). Metastasis-associated protein 1/nucleosome remodeling and histone deacetylase complex in cancer. Cancer Research, 72(2), 387–394. doi:10.1158/0008-5472.CAN-11-2345.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Fujita, N., Jaye, D. L., Kajita, M., Geigerman, C., Moreno, C. S., & Wade, P. A. (2003). MTA3, a Mi-2/NuRD complex subunit, an invasive growth pathway in breast. Cell, 113(2), 207–219. doi:10.1016/s0092-8674(03)00234-4.

    Article  CAS  PubMed  Google Scholar 

  41. Ohshiro, K., Rayala, S. K., Wigerup, C., Pakala, S. B., Natha, R. S., Gururaj, A. E., et al. (2010). Acetylation-dependent oncogenic activity of metastasis-associated protein 1 co-regulator. EMBO Reports, 11(9), 691–697. doi:10.1038/embor.2010.99.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Pakala, S. B., Singh, K., Reddy, S. D., Ohshiro, K., Li, D. Q., Mishra, L., et al. (2011). TGF-beta1 signaling targets metastasis-associated protein 1, a new effector in epithelial cells. Oncogene, 30(19), 2230–2241. doi:10.1038/onc.2010.608.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Mazumdar, A., Wang, R. A., Mishra, S. K., Adam, L., Bagheri-Yarmand, R., Mandal, M., et al. (2001). Transcriptional repression of oestrogen receptor by metastasis-associated protein 1 corepressor. Nature Cell Biology, 3(1), 30–37.

    Article  CAS  PubMed  Google Scholar 

  44. Luo, J. Y., Su, F., Chen, D. L., Shiloh, A., & Gu, W. (2000). Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature, 408(6810), 377–381.

    Article  CAS  PubMed  Google Scholar 

  45. Yoo, Y. G., Kong, G., & Lee, M. O. (2006). Metastasis-associated protein 1 enhances stability of hypoxia-inducible factor-1 alpha protein by recruiting histone deacetylase 1. EMBO Journal, 25(6), 1231–1241. doi:10.1038/sj.emboj.7601025.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Gururaj, A. E., Singh, R. R., Rayala, S. K., Holm, C., den Hollander, P., Zhang, H., et al. (2006). MTA1, a transcriptional activator of breast cancer amplified sequence 3. Proceedings of the National Academy of Sciences of the United States of America, 103(17), 6670–6675. doi:10.1073/pnas.0601989103.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Balasenthil, S., Gururaj, A. E., Talukder, A. H., Bagheri-Yarmand, R., Arrington, T., Haas, B. J., et al. (2007). Identification of Pax5 as a target of MTA1 in B-cell lymphomas. Cancer Research, 67(15), 7132–7138. doi:10.1158/0008-5472.Can-07-0750.

    Article  CAS  PubMed  Google Scholar 

  48. Cobaleda, C., Schebesta, A., Delogu, A., & Busslinger, M. (2007). Pax5: the guardian of B cell identity and function. Nature Immunology, 8(5), 463–470. doi:10.1038/ni1454.

    Article  CAS  PubMed  Google Scholar 

  49. Pakala, S. B., Bui-Nguyen, T. M., Reddy, S. D., Li, D. Q., Peng, S., Rayala, S. K., et al. (2010). Regulation of NF-kappaB circuitry by a component of the nucleosome remodeling and deacetylase complex controls inflammatory response homeostasis. Journal of Biological Chemistry, 285(31), 23590–23597. doi:10.1074/jbc.M110.139469.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Pakala, S. B., Reddy, S. D., Bui-Nguyen, T. M., Rangparia, S. S., Bommana, A., & Kumar, R. (2010). MTA1 coregulator regulates LPS response via MyD88-dependent signaling. Journal of Biological Chemistry, 285(43), 32787–32792. doi:10.1074/jbc.M110.151340.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Ghanta, K. S., Pakala, S. B., Reddy, S. D., Li, D. Q., Nair, S. S., & Kumar, R. (2011). MTA1 coregulation of transglutaminase 2 expression and function during inflammatory response. Journal of Biological Chemistry, 286(9), 7132–7138. doi:10.1074/jbc.M110.199273.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Coussens, L. M., & Werb, Z. (2002). Inflammation and cancer. Nature, 420(6917), 860–867. doi:10.1038/nature01322.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Mantovani, A., Allavena, P., Sica, A., & Balkwill, F. (2008). Cancer-related inflammation. Nature, 454(7203), 436–444. doi:10.1038/nature07205.

    Article  CAS  PubMed  Google Scholar 

  54. Divijendra, S., Reddy, N., Pakala, S. B., Ohshiro, K., Rayala, S. K., & Kumar, R. (2009). MicroRNA-661, a c/EBP alpha target, inhibits metastatic tumor antigen 1 and regulates its functions. Cancer Research, 69(14), 5639–5642. doi:10.1158/0008-5472.can-09-0898.

    Article  Google Scholar 

  55. Bui-Nguyen, T. M., Pakala, S. B., Sirigiri, D. R., Martin, E., Murad, F., & Kumar, R. (2010). Stimulation of inducible nitric oxide by hepatitis B virus transactivator protein HBx requires MTA1 coregulator. Journal of Biological Chemistry, 285(10), 6980–6986. doi:10.1074/jbc.M109.065987.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Li, Y., VandenBoom, T. G., II, Wang, Z., Kong, D., Ali, S., Philip, P. A., et al. (2010). miR-146a suppresses invasion of pancreatic cancer cells. Cancer Research, 70(4), 1486–1495. doi:10.1158/0008-5472.can-09-2792.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Kaller, M., Liffers, S.-T., Oeljeklaus, S., Kuhlmann, K., Roeh, S., Hoffmann, R., et al. (2011). Genome-wide characterization of miR-34a induced changes in protein and mRNA expression by a combined pulsed SILAC and microarray analysis. Molecular & Cellular Proteomics, 10(8), doi:10.1074/mcp.M111.010462.

  58. Zhou, H., Xu, X., Xun, Q., Yu, D., Ling, J., Guo, F., et al. (2012). microRNA-30c negatively regulates endometrial cancer cells by targeting metastasis-associated gene-1. Oncology Reports, 27(3), 807–812. doi:10.3892/or.2011.1574.

    CAS  PubMed  Google Scholar 

  59. Xia, Y., Chen, Q., Zhong, Z., Xu, C., Wu, C., Liu, B., et al. (2013). Down-regulation of miR-30c promotes the invasion of non-small cell lung cancer by targeting MTA1. Cellular Physiology and Biochemistry, 32(2), 476– 485. doi:10.1159/000354452.

  60. Chu, H., Chen, X., Wang, H., Du, Y., Wang, Y., Zang, W., et al. (2014). MiR-495 regulates proliferation and migration in NSCLC by targeting MTA3. Tumor Biology, 35(4), 3487–3494. doi:10.1007/s13277-013-1460-1.

    Article  CAS  PubMed  Google Scholar 

  61. Baek, D., Villen, J., Shin, C., Camargo, F. D., Gygi, S. P., & Bartel, D. P. (2008). The impact of microRNAs on protein output. Nature, 455(7209), 64–71. doi:10.1038/nature07242.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Selbach, M., Schwanhausser, B., Thierfelder, N., Fang, Z., Khanin, R., & Rajewsky, N. (2008). Widespread changes in protein synthesis induced by microRNAs. Nature, 455(7209), 58–63. doi:10.1038/nature07228.

    Article  CAS  PubMed  Google Scholar 

  63. He, L., He, X., Lim, L. P., de Stanchina, E., Xuan, Z., Liang, Y., et al. (2007). A microRNA component of the p53 tumour suppressor network. Nature, 447(7148), 1130–1134. doi:10.1038/nature05939.

    Article  CAS  PubMed  Google Scholar 

  64. Zhu, X., Zhang, X., Wang, H., Song, Q., Zhang, G., Yang, L., et al. (2012). MTA1 gene silencing inhibits invasion and alters the microRNA expression profile of human lung cancer cells. Oncology Reports, 28(1), 218–224. doi:10.3892/or.2012.1770.

    CAS  PubMed  Google Scholar 

  65. Li, Y., Chao, Y., Fang, Y., Wang, J., Wang, M., Zhang, H., et al. (2013). MTA1 promotes the invasion and migration of non-small cell lung cancer cells by downregulating miR-125b. Journal of Experimental & Clinical Cancer Research, 32, doi:10.1186/1756-9966-32-33.

  66. Kumar, R., Wang, R. A., Mazumdar, A., Talukder, A. H., Mandal, M., Yang, Z. B., et al. (2002). A naturally occurring MTA1 variant sequesters oestrogen receptor-alpha in the cytoplasm. Nature, 418(6898), 654–657. doi:10.1038/nature00889.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Fan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, XF. Post-transcriptional regulation of MTA family by microRNAs in the context of cancer. Cancer Metastasis Rev 33, 1011–1016 (2014). https://doi.org/10.1007/s10555-014-9526-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-014-9526-0

Keywords

Navigation