Skip to main content

Advertisement

Log in

Tumor microenvironment is multifaceted

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Cancer initiation, progression, and invasion occur in a complex and dynamic microenvironment which depends on the hosts and sites where tumors develop. Tumors arising in mucosal tissues may progress in an inflammatory context linked to local viral and/or bacterial infections. At the opposite, tumors developing in immunoprivileged sites are protected from microorganisms and grow in an immunosuppressive environment. In the present review, we summarize and present our recent data on the influence of infectious context and immune cell infiltration organization in human Non-Small Cell Lung Cancers (NSCLC) progression. We show that stimulation of tumor cells by TLR for viral ssRNA, such as TLR7/8, or bacteria, such as TLR4, promotes cell survival and induces chemoresistance. On the opposite, stimulation by TLR3, receptor for double-stranded viral RNA, decreases tumor cell viability and induces chemosensitivity in some lung tumor cell lines. Since fresh lung tumor cells exhibit a gene expression profile characteristic of TLR-stimulated lung tumor cell lines, we suspect that viral and bacterial influence may not only act on the host immune system but also directly on tumor growth and sensitivity to chemotherapy. The stroma of NSCLC contains tertiary lymphoid structures (or Tumor-induced Bronchus-Associated Lymphoid Tissues (Ti-BALT)) with mature DC, follicular DC, and T and B cells. Two subsets of immature DC, Langerhans cells (LC) and interstitial DC (intDC), were detected in the tumor nests and the stroma, respectively. Here, we show that the densities of the three DC subsets, mature DC, LC, and intDC, are highly predictive of disease-specific survival in a series of 74 early-stage NSCLC patients. We hypothesize that the mature DC may derive from local activation and migration of the immature DC—and especially LC which contact the tumor cells—to the tertiary lymphoid structures, after sampling and processing of the tumor antigens. In view of the prominent role of DC in the immune response, we suggest that the microenvironment of early-stage NSCLC may allow the in situ activation of the adaptive response. Finally, we find that the eyes or brain of mice with growing B cell lymphoma are infiltrated with T cells and that the cytokines produced ex vivo by the tumoral tissues have an impaired Th1 cytokine profile. Our work illustrates that the host and external tumor microenvironments are multifaceted and strongly influence tumor progression and anti-tumor immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BALT:

Bronchus-Associated Lymphoid Tissue

CSF:

Cerebral spinal fluid

CTL:

Cytotoxic T lymphocyte

DC:

Dendritic cell

intDC:

Interstitial DC

LC:

Langerhans cell

Ltαβ:

Lymphotoxin αβ

LTi cell:

Lymphoid Tissue inducer cell

NHL:

Non-Hodgkin lymphomas

NSCLC:

Non-small cell lung cancer

pDC:

Plasmacytoid DC

PIOL:

Primary intraocular lymphoma

PCL:

Primary cerebral lymphoma

Ti-BALT:

Tumor-induced BALT

TIL:

Tumor-infiltrating lymphocyte

TLS:

Tertiary Lymphoid Structure

TLR:

Toll-like receptors

References

  1. Balkwill, F. (2009). Tumour necrosis factor and cancer. Nature Reviews Cancer, 9, 361–371.

    Article  PubMed  CAS  Google Scholar 

  2. Ohshima, H., Tatemichi, M., & Sawa, T. (2003). Chemical basis of inflammation-induced carcinogenesis. Archives of Biochemistry and Biophysics, 417, 3–11.

    Article  PubMed  CAS  Google Scholar 

  3. Karin, M., & Greten, F. R. (2005). NF-kappaB: linking inflammation and immunity to cancer development and progression. Nature Reviews Immunology, 5, 749–759.

    Article  PubMed  CAS  Google Scholar 

  4. Lin, W.-W., & Karin, M. (2007). A cytokine-mediated link between innate immunity, inflammation, and cancer. Journal of Clinical Investigation, 117, 1175–1183.

    Article  PubMed  CAS  Google Scholar 

  5. Balkwill, F., & Mantovani, A. (2001). Inflammation and cancer: back to Virchow? Lancet, 357, 539–545.

    Article  PubMed  CAS  Google Scholar 

  6. Coussens, L. M., & Werb, Z. (2002). Inflammation and cancer. Nature, 420, 860–867.

    Article  PubMed  CAS  Google Scholar 

  7. Tartour, E., Latour, S., Mathiot, C., Thiounn, N., Mosseri, V., Joyeux, I., et al. (1995). Variable expression of CD3-zeta chain in tumor-infiltrating lymphocytes (TIL) derived from renal-cell carcinoma: relationship with TIL phenotype and function. International Journal of Cancer, 63, 205–212.

    Article  CAS  Google Scholar 

  8. Frydecka, I., Kaczmarek, P., Boćko, D., Kosmaczewska, A., Morilla, R., & Catovsky, D. (1999). Expression of signal-transducing zeta chain in peripheral blood T cells and natural killer cells in patients with Hodgkin’s disease in different phases of the disease. Leukaemia & Lymphoma, 35, 545–554.

    Article  CAS  Google Scholar 

  9. Bronstein-Sitton, N., Cohen-Daniel, L., Vaknin, I., Ezernitchi, A. V., Leshem, B., Halabi, A., et al. (2003). Sustained exposure to bacterial antigen induces interferon-gamma-dependent T cell receptor zeta down-regulation and impaired T cell function. Nature Immunology, 4, 957–964.

    Article  PubMed  CAS  Google Scholar 

  10. Cherfils-Vicini, J., Platonova, S., Gillard, M., Laurans, L., Validire, P., Caliandro, R., et al. (2010). Triggering of TLR7 and TLR8 expressed by human lung cancer cells induces cell survival and chemoresistance. The Journal of Clinical Investigation, 120(4), 1285–1297.

    Article  PubMed  CAS  Google Scholar 

  11. Dunn, G. P., Koebel, C. M., & Schreiber, R. D. (2006). Interferons, immunity and cancer immunoediting. Nature Reviews Immunology, 6, 836–848.

    Article  PubMed  CAS  Google Scholar 

  12. BURNET, M. (1957). Cancer: a biological approach. III. Viruses associated with neoplastic conditions. IV. Practical applications. British Medical Journal, 1, 841–847.

    Article  PubMed  CAS  Google Scholar 

  13. Galon, J., Costes, A., Sanchez-Cabo, F., Kirilovsky, A., Mlecnik, B., Lagorce-Pagès, C., et al. (2006). Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science, 313, 1960–1964.

    Article  PubMed  CAS  Google Scholar 

  14. Pagès, F., Berger, A., Camus, M., Sanchez-Cabo, F., Costes, A., Molidor, R., et al. (2005). Effector memory T cells, early metastasis, and survival in colorectal cancer. The New England Journal of Medicine, 353, 2654–2666.

    Article  PubMed  Google Scholar 

  15. Dieu-Nosjean, M.-C., Antoine, M., Danel, C., Heudes, D., Wislez, M., Poulot, V., et al. (2008). Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. Journal of Clinical Oncology, 26, 4410–4417.

    Article  PubMed  CAS  Google Scholar 

  16. Fridman, W. H., Galon, J., Dieu-Nosjean, M.-C., Cremer, I., Fisson, S., Damotte, D., Pagès, F., Tartour, E., Sautès-Fridman, C. (2010). Immune infiltration in human cancer: prognostic significance and disease control. Current topics in Microbiology and Immunology

  17. Banchereau, J., & Steinman, R. M. (1998). Dendritic cells and the control of immunity. Nature, 392, 245–252.

    Article  PubMed  CAS  Google Scholar 

  18. Klechevsky, E., Morita, R., Liu, M., Cao, Y., Coquery, S., Thompson-Snipes, L., et al. (2008). Functional specializations of human epidermal Langerhans cells and CD14+ dermal dendritic cells. Immunity, 29, 497–510.

    Article  PubMed  CAS  Google Scholar 

  19. Ménétrier-Caux, C., Bain, C., Favrot, M. C., Duc, A., & Blay, J. Y. (1999). Renal cell carcinoma induces interleukin 10 and prostaglandin E2 production by monocytes. British Journal of Cancer, 79, 119–130.

    Article  PubMed  Google Scholar 

  20. Almand, B., Resser, J. R., Lindman, B., Nadaf, S., Clark, J. I., Kwon, E. D., et al. (2000). Clinical significance of defective dendritic cell differentiation in cancer. Clinical Cancer Research, 6, 1755–1766.

    PubMed  CAS  Google Scholar 

  21. Coventry, B. J., Lee, P.-L., Gibbs, D., & Hart, D. N. J. (2002). Dendritic cell density and activation status in human breast cancer—CD1a, CMRF-44, CMRF-56 and CD-83 expression. British Journal of Cancer, 86, 546–551.

    Article  PubMed  CAS  Google Scholar 

  22. Gabrilovich, D. I., Chen, H. L., Girgis, K. R., Cunningham, H. T., Meny, G. M., Nadaf, S., et al. (1996). Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Natural Medicines, 2, 1096–1103.

    Article  CAS  Google Scholar 

  23. Movassagh, M., Spatz, A., Davoust, J., Lebecque, S., Romero, P., Pittet, M., et al. (2004). Selective accumulation of mature DC-Lamp + dendritic cells in tumor sites is associated with efficient T-cell-mediated antitumor response and control of metastatic dissemination in melanoma. Cancer Research, 64, 2192–2198.

    Article  PubMed  CAS  Google Scholar 

  24. Vermi, W., Bonecchi, R., Facchetti, F., Bianchi, D., Sozzani, S., Festa, S., et al. (2003). Recruitment of immature plasmacytoid dendritic cells (plasmacytoid monocytes) and myeloid dendritic cells in primary cutaneous melanomas. The Journal of Pathology, 200, 255–268.

    Article  PubMed  Google Scholar 

  25. Bell, D., Chomarat, P., Broyles, D., Netto, G., Harb, G. M., Lebecque, S., et al. (1999). In breast carcinoma tissue, immature dendritic cells reside within the tumor, whereas mature dendritic cells are located in peritumoral areas. The Journal of Experimental Medicine, 190, 1417–1426.

    Article  PubMed  CAS  Google Scholar 

  26. Furihata, M., Ono, Y., Ichikawa, K., Tomita, S., Fujimori, T., & Kubota, K. (2005). Prognostic significance of CD83 positive, mature dendritic cells in the gallbladder carcinoma. Oncology Reports, 14, 353–356.

    PubMed  CAS  Google Scholar 

  27. Schwaab, T., Weiss, J. E., Schned, A. R., & Barth, R. J., Jr. (2001). Dendritic cell infiltration in colon cancer. Journal of Immunotherapy, 24, 130–137.

    Article  CAS  Google Scholar 

  28. Eisenthal, A., Polyvkin, N., Bramante-Schreiber, L., Misonznik, F., Hassner, A., & Lifschitz-Mercer, B. (2001). Expression of dendritic cells in ovarian tumors correlates with clinical outcome in patients with ovarian cancer. Human Pathology, 32, 803–807.

    Article  PubMed  CAS  Google Scholar 

  29. Reichert, T. E., Scheuer, C., Day, R., Wagner, W., & Whiteside, T. L. (2001). The number of intratumoral dendritic cells and zeta-chain expression in T cells as prognostic and survival biomarkers in patients with oral carcinoma. Cancer, 91, 2136–2147.

    Article  PubMed  CAS  Google Scholar 

  30. Treilleux, I., Blay, J.-Y., Bendriss-Vermare, N., Ray-Coquard, I., Bachelot, T., Guastalla, J.-P., et al. (2004). Dendritic cell infiltration and prognosis of early stage breast cancer. Clinical Cancer Research, 10, 7466–7474.

    Article  PubMed  CAS  Google Scholar 

  31. Vallabhapurapu, S., & Karin, M. (2009). Regulation and function of NF-kappaB transcription factors in the immune system. Annual Review of Immunology, 27, 693–733.

    Article  PubMed  CAS  Google Scholar 

  32. Li, X., Jiang, S., & Tapping, R. (2010). Toll-like receptor signaling in cell proliferation and survival. Cytokine, 49, 40422.

    Google Scholar 

  33. Rakoff-Nahoum, S., & Medzhitov, R. (2007). Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88. Science, 317, 124–127.

    Article  PubMed  CAS  Google Scholar 

  34. Xiao, H., Gulen, M. F., Qin, J., Yao, J., Bulek, K., Kish, D., et al. (2007). The toll–interleukin-1 receptor member SIGIRR regulates colonic epithelial homeostasis, inflammation, and tumorigenesis. Immunity, 26, 461–475.

    Article  PubMed  CAS  Google Scholar 

  35. Huang, B., Zhao, J., Unkeless, J. C., Feng, Z. H., & Xiong, H. (2008). TLR signaling by tumor and immune cells: a double-edged sword. Oncogene, 27, 218–224.

    Article  PubMed  CAS  Google Scholar 

  36. Ikebe, M., Kitaura, Y., Nakamura, M., Tanaka, H., Yamasaki, A., Nagai, S., et al. (2009). Lipopolysaccharide (LPS) increases the invasive ability of pancreatic cancer cells through the TLR4/MyD88 signaling pathway. Journal of Surgical Oncology, 100(8), 725–731.

    Article  PubMed  CAS  Google Scholar 

  37. Killeen, S. D., Wang, J. H., Andrews, E. J., & Redmond, H. P. (2006). Exploitation of the Toll-like receptor system in cancer: a doubled-edged sword? British Journal of Cancer, 95, 247–252.

    Article  PubMed  CAS  Google Scholar 

  38. Kelly, M. G., Alvero, A. B., Chen, R., Silasi, D.-A., Abrahams, V. M., Chan, S., et al. (2006). TLR-4 signaling promotes tumor growth and paclitaxel chemoresistance in ovarian cancer. Cancer Research, 66, 3859–3868.

    Article  PubMed  CAS  Google Scholar 

  39. Szajnik, M., Szczepanski, M., Czystowska, M., Elishaev, E., Mandapathil, M., Nowak-Markwitz, E., et al. (2009). TLR4 signaling induced by lipopolysaccharide or paclitaxel regulates tumor survival and chemoresistance in ovarian cancer. Oncogene, 28, 4353–4363.

    Article  PubMed  CAS  Google Scholar 

  40. He, W., Liu, Q., Wang, L., Chen, W., Li, N., & Cao, X. (2007). TLR4 signaling promotes immune escape of human lung cancer cells by inducing immunosuppressive cytokines and apoptosis resistance. Molecular Immunology, 44, 2850–2859.

    Article  CAS  Google Scholar 

  41. Huang, B., Zhao, J., Li, H., He, K.-L., Chen, Y., Chen, S.-H., et al. (2005). Toll-like receptors on tumor cells facilitate evasion of immune surveillance. Cancer Research, 65, 5009–5014.

    Article  PubMed  CAS  Google Scholar 

  42. Jahrsdorfer, B., Mühlenhoff, L., Blackwell, S. E., Wagner, M., Poeck, H., Hartmann, E., et al. (2005). B-cell lymphomas differ in their responsiveness to CpG oligodeoxynucleotides. Clinical Cancer Research, 11, 1490–1499.

    Article  PubMed  CAS  Google Scholar 

  43. Salaun, B., Coste, I., Rissoan, M.-C., Lebecque, S. J., & Renno, T. (2006). TLR3 can directly trigger apoptosis in human cancer cells. Journal of Immunology, 176, 4894–4901.

    CAS  Google Scholar 

  44. Salaun, B., Lebecque, S., Matikainen, S., Rimoldi, D., & Romero, P. (2007). Toll-like receptor 3 expressed by melanoma cells as a target for therapy? Clinical Cancer Research, 13, 4565–4574.

    Article  PubMed  CAS  Google Scholar 

  45. Salaun, B., Romero, P., & Lebecque, S. (2007). Toll-like receptors’ two-edged sword: when immunity meets apoptosis. European Journal of Immunology, 37, 3311–3318.

    Article  PubMed  CAS  Google Scholar 

  46. Chen, K., Huang, J., Gong, W., Iribarren, P., Dunlop, N. M., & Wang, J. M. (2007). Toll-like receptors in inflammation, infection and cancer. International Immunopharmacology, 7, 1271–1285.

    Article  PubMed  CAS  Google Scholar 

  47. Krieg, A. M. (2007). Development of TLR9 agonists for cancer therapy. Journal of Clinical Investigation, 117, 1184–1194.

    Article  PubMed  CAS  Google Scholar 

  48. Kumar, H., Kawai, T., & Akira, S. (2009). Pathogen recognition in the innate immune response. The Biochemical Journal, 420, 1–16.

    Article  PubMed  CAS  Google Scholar 

  49. Tsan, M.-F. (2006). Toll-like receptors, inflammation and cancer. Seminars in Cancer Biology, 16, 32–37.

    Article  PubMed  CAS  Google Scholar 

  50. Kanzler, H., Barrat, F. J., Hessel, E. M., & Coffman, R. L. (2007). Therapeutic targeting of innate immunity with toll-like receptor agonists and antagonists. Natural Medicines, 13, 552–559.

    Article  CAS  Google Scholar 

  51. Rakoff-Nahoum, S., & Medzhitov, R. (2009). Toll-like receptors and cancer. Nature Reviews Cancer, 9, 57–63.

    Article  PubMed  CAS  Google Scholar 

  52. Schön, M. P., & Schön, M. (2008). TLR7 and TLR8 as targets in cancer therapy. Oncogene, 27, 190–199.

    Article  PubMed  Google Scholar 

  53. Littman, A. J., Jackson, L. A., & Vaughan, T. L. (2005). Chlamydia pneumoniae and lung cancer: epidemiologic evidence. Cancer Epidemiol Biomarkers and Prevention, 14, 773–778.

    Article  CAS  Google Scholar 

  54. Littman, A. J., Thornquist, M. D., White, E., Jackson, L. A., Goodman, G. E., & Vaughan, T. L. (2004). Prior lung disease and risk of lung cancer in a large prospective study. Cancer Causes & Control, 15, 819–827.

    Article  Google Scholar 

  55. Littman, A. J., White, E., Jackson, L. A., Thornquist, M. D., Gaydos, C. A., Goodman, G. E., et al. (2004). Chlamydia pneumoniae infection and risk of lung cancer. Cancer Epidemiol Biomarkers and Prevention, 13, 1624–1630.

    Google Scholar 

  56. Philip, M., Rowley, D. A., & Schreiber, H. (2004). Inflammation as a tumor promoter in cancer induction. Seminars in Cancer Biology, 14, 433–439.

    Article  PubMed  CAS  Google Scholar 

  57. Qin, J., Yao, J., Cui, G., Xiao, H., Kim, T. W., Fraczek, J., et al. (2006). TLR8-mediated NF-kappaB and JNK activation are TAK1-independent and MEKK3-dependent. The Journal of Biological Chemistry, 281, 21013–21021.

    Article  PubMed  CAS  Google Scholar 

  58. Huang, B., Zhao, J., Shen, S., Li, H., He, K.-L., Shen, G.-X., et al. (2007). Listeria monocytogenes promotes tumor growth via tumor cell toll-like receptor 2 signaling. Cancer Research, 67, 4346–4352.

    Article  PubMed  CAS  Google Scholar 

  59. Luo, J.-L., Maeda, S., Hsu, L.-C., Yagita, H., & Karin, M. (2004). Inhibition of NF-kappaB in cancer cells converts inflammation- induced tumor growth mediated by TNFalpha to TRAIL-mediated tumor regression. Cancer Cell, 6, 297–305.

    Article  PubMed  CAS  Google Scholar 

  60. Sfondrini, L., Rossini, A., Besusso, D., Merlo, A., Tagliabue, E., Mènard, S., et al. (2006). Antitumor activity of the TLR-5 ligand flagellin in mouse models of cancer. Journal of Immunology, 176, 6624–6630.

    CAS  Google Scholar 

  61. Earl, T., Nicoud, I., Pierce, J., Wright, J., Majoras, N., Rubin, J., et al. (2009). Silencing of TLR4 Decreases Liver Tumor Burden in a Murine Model of Colorectal Metastasis and Hepatic Steatosis. Annals of Surgical Oncology, 16, 1043–1050.

    Article  PubMed  CAS  Google Scholar 

  62. Tesniere, A., Schlemmer, F., Boige, V., Kepp, O., Martins, I., Ghiringhelli, F., et al. (2010). Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene, 29, 482–491.

    Article  PubMed  CAS  Google Scholar 

  63. Chiron, D., Pellat-Deceunynck, C., Amiot, M., Bataille, R., & Jego, G. (2009). TLR3 ligand induces NF-{kappa}B activation and various fates of multiple myeloma cells depending on IFN-{alpha} production. Journal of Immunology, 182, 4471–4478.

    Article  CAS  Google Scholar 

  64. Wang, Q., Nagarkar, D., Bowman, E., Schneider, D., Gosangi, B., Lei, J., et al. (2009). Role of double-stranded RNA pattern recognition receptors in rhinovirus-induced airway epithelial cell responses. Journal of Immunology, 183, 6989–6997.

    Article  CAS  Google Scholar 

  65. Peng, S., Geng, J., Sun, R., Tian, Z., & Wei, H. (2008). Polyinosinic-polycytidylic acid liposome induces human hepatoma cells apoptosis which correlates to the up-regulation of RIG-I like receptors. Cancer Science, 100, 529–536.

    Article  PubMed  Google Scholar 

  66. Nakajima, T., Kodama, T., Tsumuraya, M., Shimosato, Y., & Kameya, T. (1985). S-100 protein-positive Langerhans cells in various human lung cancers, especially in peripheral adenocarcinomas. Virchows Archiv. A, Pathological Anatomy and Histopathology, 407, 177–189.

    Article  PubMed  CAS  Google Scholar 

  67. Demedts, I. K., Brusselle, G. G., Vermaelen, K. Y., & Pauwels, R. A. (2005). Identification and characterization of human pulmonary dendritic cells. American Journal of Respiratory Cell and Molecular Biology, 32, 177–184.

    Article  PubMed  CAS  Google Scholar 

  68. Tazi, A., Bouchonnet, F., Grandsaigne, M., Boumsell, L., Hance, A. J., & Soler, P. (1993). Evidence that granulocyte macrophage-colony-stimulating factor regulates the distribution and differentiated state of dendritic cells/Langerhans cells in human lung and lung cancers. The Journal of Clinical Investigation, 91, 566–576.

    Article  PubMed  CAS  Google Scholar 

  69. Asselin-Paturel, C., Pardoux, C., Gay, F., & Chouaib, S. (1998). Failure of TGF beta1 and IL-12 to regulate human FasL and mTNF alloreactive cytotoxic T-cell pathways. Tissue Antigens, 51, 242–249.

    Article  PubMed  CAS  Google Scholar 

  70. Arenberg, D. A., Keane, M. P., DiGiovine, B., Kunkel, S. L., Strom, S. R., Burdick, M. D., et al. (2000). Macrophage infiltration in human non-small-cell lung cancer: the role of CC chemokines. Cancer Immunology, Immunotherapy, 49, 63–70.

    Article  PubMed  CAS  Google Scholar 

  71. Põld, M., Zhu, L. X., Sharma, S., Burdick, M. D., Lin, Y., Lee, P. P. N., et al. (2004). Cyclooxygenase-2-dependent expression of angiogenic CXC chemokines ENA-78/CXC Ligand (CXCL) 5 and interleukin-8/CXCL8 in human non-small cell lung cancer. Cancer Research, 64, 1853–1860.

    Article  PubMed  Google Scholar 

  72. Cao, T., Ueno, H., Glaser, C., Fay, J. W., Palucka, A. K., & Banchereau, J. (2007). Both Langerhans cells and interstitial DC cross-present melanoma antigens and efficiently activate antigen-specific CTL. European Journal of Immunology, 37, 2657–2667.

    Article  PubMed  CAS  Google Scholar 

  73. Marchal-Sommé, J., Uzunhan, Y., Marchand-Adam, S., Valeyre, D., Soumelis, V., Crestani, B., et al. (2006). Cutting edge: nonproliferating mature immune cells form a novel type of organized lymphoid structure in idiopathic pulmonary fibrosis. Journal of Immunology, 176, 5735–5739.

    Google Scholar 

  74. Wakabayashi, O., Yamazaki, K., Oizumi, S., Hommura, F., Kinoshita, I., Ogura, S., et al. (2003). CD4+ T cells in cancer stroma, not CD8+ T cells in cancer cell nests, are associated with favorable prognosis in human non-small cell lung cancers. Cancer Science, 94, 1003–1009.

    Article  PubMed  CAS  Google Scholar 

  75. Tartour, E., Gey, A., Sastre-Garau, X., Lombard Surin, I., Mosseri, V., & Fridman, W. H. (1998). Prognostic value of intratumoral interferon gamma messenger RNA expression in invasive cervical carcinomas. Journal of the National Cancer Institute, 90, 287–294.

    Article  PubMed  CAS  Google Scholar 

  76. Yu, P., Lee, Y., Liu, W., Chin, R. K., Wang, J., Wang, Y., et al. (2004). Priming of naive T cells inside tumors leads to eradication of established tumors. Nature Immunology, 5, 141–149.

    Article  PubMed  CAS  Google Scholar 

  77. Kirk, C. J., Hartigan-O’Connor, D., Nickoloff, B. J., Chamberlain, J. S., Giedlin, M., Aukerman, L., et al. (2001). T cell-dependent antitumor immunity mediated by secondary lymphoid tissue chemokine: augmentation of dendritic cell-based immunotherapy. Cancer Research, 61, 2062–2070.

    PubMed  CAS  Google Scholar 

  78. Moyron-Quiroz, J. E., Rangel-Moreno, J., Kusser, K., Hartson, L., Sprague, F., Goodrich, S., et al. (2004). Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity. Natural Medicines, 10, 927–934.

    Article  CAS  Google Scholar 

  79. Tesar, B. M., Chalasani, G., Smith-Diggs, L., Baddoura, F. K., Lakkis, F. G., & Goldstein, D. R. (2004). Direct antigen presentation by a xenograft induces immunity independently of secondary lymphoid organs. Journal of Immunology, 173, 4377–4386.

    CAS  Google Scholar 

  80. Moyron-Quiroz, J. E., Rangel-Moreno, J., Hartson, L., Kusser, K., Tighe, M. P., Klonowski, K. D., et al. (2006). Persistence and responsiveness of immunologic memory in the absence of secondary lymphoid organs. Immunity, 25, 643–654.

    Article  PubMed  CAS  Google Scholar 

  81. Drayton, D. L., Liao, S., Mounzer, R. H., & Ruddle, N. H. (2006). Lymphoid organ development: from ontogeny to neogenesis. Nature Immunology, 7, 344–353.

    Article  PubMed  CAS  Google Scholar 

  82. Rangel-Moreno, J., Carragher, D., & Randall, T. D. (2007). Role of lymphotoxin and homeostatic chemokines in the development and function of local lymphoid tissues in the respiratory tract. Inmunologia (Barcelona, Spain: 1987), 26, 13–28.

    Google Scholar 

  83. GeurtsvanKessel, C. H., Willart, M. A. M., Bergen, I. M., van Rijt, L. S., Muskens, F., Elewaut, D., et al. (2009). Dendritic cells are crucial for maintenance of tertiary lymphoid structures in the lung of influenza virus-infected mice. The Journal of Experimental Medicine, 206, 2339–2349.

    Article  PubMed  CAS  Google Scholar 

  84. Halle, S., Dujardin, H. C., Bakocevic, N., Fleige, H., Danzer, H., Willenzon, S., et al. (2009). Induced bronchus-associated lymphoid tissue serves as a general priming site for T cells and is maintained by dendritic cells. The Journal of Experimental Medicine, 206, 2593–2601.

    Article  PubMed  CAS  Google Scholar 

  85. Cassoux, N., Merle-Beral, H., Leblond, V., Bodaghi, B., Miléa, D., Gerber, S., et al. (2000). Ocular and central nervous system lymphoma: clinical features and diagnosis. Ocular Immunology and Inflammation, 8, 243–250.

    Article  PubMed  CAS  Google Scholar 

  86. Coupland, S. E., & Heimann, H. (2004). Primary intraocular lymphoma. Der Ophthalmologe, 101, 87–98.

    Article  PubMed  CAS  Google Scholar 

  87. Pantanelli, S. M., Li, Z., Fariss, R., Mahesh, S. P., Liu, B., & Nussenblatt, R. B. (2009). Differentiation of malignant B-lymphoma cells from normal and activated T-cell populations by their intrinsic autofluorescence. Cancer Research, 69, 4911–4917.

    Article  PubMed  CAS  Google Scholar 

  88. Touitou, V., Daussy, C., Bodaghi, B., Camelo, S., de Kozak, Y., Lehoang, P., et al. (2007). Impaired th1/tc1 cytokine production of tumor-infiltrating lymphocytes in a model of primary intraocular B-cell lymphoma. Investigative Ophthalmology & Visual Science, 48, 3223–3229.

    Article  Google Scholar 

  89. Akpek, E. K., Ahmed, I., Hochberg, F. H., Soheilian, M., Dryja, T. P., Jakobiec, F. A., et al. (1999). Intraocular-central nervous system lymphoma: clinical features, diagnosis, and outcomes. Ophthalmology, 106, 1805–1810.

    Article  PubMed  CAS  Google Scholar 

  90. Akpek, E. K., Maca, S. M., Christen, W. G., & Foster, C. S. (1999). Elevated vitreous interleukin-10 level is not diagnostic of intraocular-central nervous system lymphoma. Ophthalmology, 106, 2291–2295.

    Article  PubMed  CAS  Google Scholar 

  91. Char, D. H., Ljung, B. M., Deschênes, J., & Miller, T. R. (1988). Intraocular lymphoma: immunological and cytological analysis. The British Journal of Ophthalmology, 72, 905–911.

    Article  PubMed  CAS  Google Scholar 

  92. Char, D. H., Ljung, B. M., Miller, T., & Phillips, T. (1988). Primary intraocular lymphoma (ocular reticulum cell sarcoma) diagnosis and management. Ophthalmology, 95, 625–630.

    PubMed  CAS  Google Scholar 

  93. Corriveau, C., Easterbrook, M., & Payne, D. (1986). Lymphoma simulating uveitis (masquerade syndrome). Canadian Journal of Ophthalmology, 21, 144–149.

    PubMed  CAS  Google Scholar 

  94. Coupland, S. E., & Damato, B. (2008). Understanding intraocular lymphomas. Clin Experiment Ophthalmol, 36, 564–578.

    Article  PubMed  Google Scholar 

  95. Pagès, F., Galon, J., Dieu-Nosjean, M.-C., Tartour, E., Sautès-Fridman, C., & Fridman, W.-H. (2010). Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene, 29, 1093–1102.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the cellular imaging and cytometry plateform (CICC, Centre de Recherche des Cordeliers, Paris F-75006, France). Authors are grateful to Didier Heudes, Nathalie Rabbe, Virginie Poulot, Ludivine Laurans, Pierre Validire, Valérie Touitou, Cécile Daussy, Sabrina Donnou, Claire Galand, and Hélène Fohrer-Ting for their collaboration to these studies and Fathia Mami-Chouaib for the gift of NSCLC tumor specimens and cell lines. We also thank Jacques Cadranel, Martine Antoine, and Claire Danel for their helpful scientific discussions.

Grant support

This work was supported by the Institut National du Cancer (Grants RC013-C06N631-2005 and C06N748-2006), the Institut National de la Santé et de la Recherche Médicale, the University Pierre and Marie Curie, the University Paris-Descartes, and the Association pour la Recherche contre le Cancer (Grant 05/3751, PEMT 00-03 06/ARC-INCA, 06 Equip., 09/183, 09/194), Cancéropole IDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Sautès-Fridman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sautès-Fridman, C., Cherfils-Vicini, J., Damotte, D. et al. Tumor microenvironment is multifaceted. Cancer Metastasis Rev 30, 13–25 (2011). https://doi.org/10.1007/s10555-011-9279-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-011-9279-y

Keywords

Navigation