Skip to main content

Advertisement

Log in

The roles of copper transporters in cisplatin resistance

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Platinum-based antitumor agents have been effective in the treatments of many human malignancies but the ultimate success of these agents is often compromised by development of drug resistance. One mechanism associated with resistance to platinum drugs is reduced intracellular accumulation owing to impaired drug intake, enhanced outward transport, or both. Mechanisms for transporting platinum drugs were not known until recent demonstrations that import and export transporters involved in maintenance copper homeostasis are also involved in the transport of these drugs. Ctr1, the major copper influx transporter, has been convincingly demonstrated to transport cisplatin and its analogues, carboplatin, and oxaliplatin. Evidence also suggests that the two copper efflux transporters ATP7A and ATP7B regulate the efflux of cisplatin. These observations are intriguing, because conventional thinking of the inorganic physiologic chemistry of cisplatin and copper is quite different. Hence, understanding the underlying mechanistic aspects of these transporters is critically important. While the mechanisms by which hCtr1, ATP7A and ATP7B transport copper ions have been studied extensively, very little is known about the mechanisms by which these transporters shuffle platinum-based antitumor agents. This review discusses the identification of copper transporters as platinum drug transporters, the structural-functional and mechanistic aspects of these transporters, the mechanisms that regulate their expression, and future research directions that may eventually lead to improved efficacy of platinum-based-based drugs in cancer chemotherapy through modulation of their transporters’ activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kollmannsberger, C., Nichols, C., & Bokemeyer, C. (2006). Recent advances in management of patients with platinum-refractory testicular germ cell tumors. Cancer, 106, 1217–1226.

    PubMed  CAS  Google Scholar 

  2. Boulikas, T., & Vougiouka, M. (2003). Cisplatin and platinum drug at the molecular level. Oncology Reports, 10, 1663–1682.

    PubMed  CAS  Google Scholar 

  3. Giaccone, G. (2000). Clinical perspectives on platinum resistance. Drugs, 59, 9–17.

    PubMed  CAS  Google Scholar 

  4. Daugaad, G., & Abildgaard, U. (1989). Cisplatin nephrotoxicity. A Review. Cancer Chemotherapy and Pharmacology, 25, 1–9.

    Google Scholar 

  5. Lokich, J., & Anderson, N. (1998). Carboplatin versus cisplatin in solid tumors: An analysis of the literature. Annals of Oncology, 9, 12–21.

    Google Scholar 

  6. Raymond, E., Faivre, S., Chaney, S., Woynarowski, J., & Cvitkovic, E. (2002). Cellular and molecular pharmacology of oxaliplatin. Molecular Cancer Therapeutics, 1, 227–235.

    PubMed  CAS  Google Scholar 

  7. Siddik, Z. H. (2003). Cisplatin: Mode of cytotoxic action and molecular basis of resistance. Oncogene, 22, 7165–7179.

    Google Scholar 

  8. Wang, D., & Lippard, S. J. (2005). Cellular processing of platinum anticancer drugs. Nature Rev Drug Discov, 4, 307–320.

    CAS  Google Scholar 

  9. Johnson, S. W., Laub, P. B., Beesley, J. S., Ozols, R. F., & Hamilton, T. C. (1997). Increased platinum-DNA resistance to various chemotherapeutic agents in unrelated human ovarian cancer cell lines. Cancer Research, 57, 850–856.

    PubMed  CAS  Google Scholar 

  10. Gately, D. P., & Howell, S. B. (1993). Cellular accumulation of the anticancer gent cisplatin: A review. British Journal of Cancer, 67, 1171–1176.

    PubMed  CAS  Google Scholar 

  11. Twentyman, P. R., Wright, K. A., Mistry, P., Kelland, L. R., & Murrer, B. A. (1992). Sensitivity to novel platinum compounds of panels of human lung cancer cell lines with acquired and inherent resistance to cisplatin. Cancer Research, 52, 5674–5680.

    PubMed  CAS  Google Scholar 

  12. Waud, W. R. (1987). Differential uptake of cis-diamminedichloroplatinum (II) in sensitive and resistant murine L1210 leukemia cell lines. Cancer Research, 46, 6549–6555.

    Google Scholar 

  13. Teicher, B. A., Holden, S. A., Herman, T. S., Sotomayor, E. A., Khandekar, V., Rosbe, K. W., et al. (1991). Characteristics of five human tumor cell lines and sublines resistant to cisdiamminedichloroplatinum (II). International Journal of Cancer, 47, 252–260.

    CAS  Google Scholar 

  14. Oldenburg, J., Begg, A. C., van Vugt, M. J., Ruevekamp, M., Schornagel, J. H., Pinedo, H. M., et al. (1994). Characterization of resistance mechanisms to cis-diamminedichloroplatinum (II) in three sublines of the CC531 colon adenocarcinoma cell line in vitro. Cancer Research, 54, 487–493.

    PubMed  CAS  Google Scholar 

  15. Kellend, L. R., Mistry, P., & Abel, G. (1992). Establishment and characterization of an in vitro model of acquired resistance to cisplatin in a human testicular nonseminomatousgerm cell line. Cancer Research, 52, 1710–1716.

    Google Scholar 

  16. Metcalfe, S. A., Cain, K., & Hill, B. T. (1986). Possible mechanisms for differences in sensitivity to cisplatinum in human prostate tumor cell lines. Cancer Letters, 31, 163–169.

    PubMed  CAS  Google Scholar 

  17. Song, I.-M., Savaraj, N., Siddik, Z., Liu, P., Wei, Y., Wu, C. J., et al. (2004). Role of human copper transporter Ctr1 in the transport of platinum-based antitumor agents in cisplatin-sensitive and cisplatin-resistant cells. Molecular Cancer Therapeutics, 3, 1543–1549.

    PubMed  CAS  Google Scholar 

  18. Komatsu, M., Sumizawa, T., Mutoh, M., Chen, Z. S., Terada, K., Furukawa, T., et al. (2000). Copper transporting P-type adenosine triphosphatase (ATP7B) is associated with cisplatin resistance. Cancer Research, 60, 1312–1316.

    PubMed  CAS  Google Scholar 

  19. Miyamashita, H., Nitta, Y., Mori, S., Kanzaki, A., Nakayama, K., Terada, K., et al. (2003) Expression of copper transporting P-type adenotriphosphatase (ATP7B) as a chemoresistance marker in human oral squamous cell carcinoma treated with cisplatin. Oral Oncology, 39, 157–162.

    Google Scholar 

  20. Dancis, A., Haile, D., Yuan, D. S., & Klausner, R. D. (1994). The Saccharomyces cerevisiae copper transport protein (Ctr1p). Biochemical characterization, regulation by copper, and physiologic role in copper uptake. Journal of Biological Chemistry, 269, 25660–25667.

    PubMed  CAS  Google Scholar 

  21. Dancis, A., Yuan, D. S., Haile, D., Askwith, C., Eide, D., Moehle, C., et al. (1994). Molecular characterization of a copper transport protein in S. cerevisiae: An unexpected role for copper in iron transport. Cell, 76, 398–402.

    Google Scholar 

  22. Knight, S. A., Labbe, S., Kwon, L. F., Kosman, D. J., & Thiele, D. J. (1996). A widespread transposable element masks expression of a yeast copper transport gene. Genes & Development, 10, 1917–1929.

    CAS  Google Scholar 

  23. Kampfenkel, K., Kushnir, S., Babiychuk, E., Inze, D., & Van Montagu, M. (1995). Molecular characterization of a putative, Arabidopsis thaliana copper transporter and its yeast homologue. Journal of Biological Chemistry, 270, 286479–286486.

    Google Scholar 

  24. Zhou, B., & Gitschier, J. (1997). hCtr1: A human gene for copper uptake identified by complementation in yeast. Proceedings of the National Academy of Sciences of the United States of America, 94, 7481–7486.

    PubMed  CAS  Google Scholar 

  25. Lee, J., Prohaska, J. R., Dagenais, S. L., Glover, T. W., & Thiele, D. J. (2000). Isolation of a murine copper transporter gene, tissue specific expression and functional complementation of a yeast copper transport mutant. Gene, 254, 87–96.

    PubMed  CAS  Google Scholar 

  26. Moller, L. B., Petersen, C., Lund, C., & Horn, N. (2000). Characterization of the hCtr1 gene: Genomic organization, functional expression, and identification of a highly homologous processed gene. Gene, 257, 13–22.

    PubMed  CAS  Google Scholar 

  27. Lee, J., Pena, M. M., Nose, Y., & Thiele, D. J. (2002). Biochemical characterization of the human copper transporter Ctr1. Journal of Biological Chemistry, 277, 4380–4387.

    PubMed  CAS  Google Scholar 

  28. Ishida, S., Lee, J., Thiele, D. J., & Herskowitz, I. (2002). Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proceedings of the National Academy of Sciences of the United States of America, 99, 14298–14302.

    PubMed  CAS  Google Scholar 

  29. Jungmann, J., Reins, H. A., Lee, J., Romeo, A., Hassett, R., Kosman, D., et al. (1993). Mac1, a nuclear regulatory protein related to Cu-dependent transcription factors is involved in Cu/Fe utilization and stress resistance in yeast. EMBO Journal, 12, 5051–5056.

    PubMed  CAS  Google Scholar 

  30. Lin, X., Okuda, T., Holzer, A., & Howell, S. B. (2002). The copper transporter CTR1 regulates cisplatin uptake in Saccharomyces cerevisae. Molecular Pharmacology, 62, 1154–1159.

    PubMed  CAS  Google Scholar 

  31. Safaei, R., & Howell, S. B. (2005). Copper transporters regulate the cellular pharmacology and sensitivity to Pt drugs. Critical Reviews in Oncology/Hematology, 53, 13–23.

    PubMed  Google Scholar 

  32. Holzer, A. K., Samimi, G., Katano, K., Naerdemann, W., Lin, X., Safaei, R., et al. (2004). The copper influx transporter human copper transport protein 1 regulates the uptake of cisplatin in human ovarian carcinoma cells. Molecular Pharmacology, 66, 817–823.

    PubMed  CAS  Google Scholar 

  33. Beretta, G. L., Gatti, L., Tinelli, S., Corna, E., Colangelo, D., Zunino, F., et al. (2004). Cellular pharmacology of cisplatin in relation to the expression of human copper transporter Ctr1 in different pairs of cisplatin-sensitive and -resistant cells. Biochemical Pharmacology, 68, 283–291.

    PubMed  CAS  Google Scholar 

  34. Puig, S., & Thiele, D. J. (2002). Molecular mechanisms of copper uptake and distribution. Current Opinion in Chemical Biology, 6, 171–180.

    PubMed  CAS  Google Scholar 

  35. Klomp, A. E., Juijin, J. A., van der Gun, L. T., van den Berg, I. E., Berger, R., & Klomp, L. W. (2003). The N-terminus of the human copper transporter1 (hCtr1) is localized extracellularly and interacts with itself. Biochemical Journal, 370, 881–889.

    PubMed  CAS  Google Scholar 

  36. Aller, S. G., Eng, E. T., De Feo, C. J., & Unger, U. M. (2004). Eukaryotic CTR copper uptake transporters require two faces of the third transmembrane domain for helix packing, oligomerization, and function. Journal of Biological Chemistry, 279, 53435–53441.

    PubMed  CAS  Google Scholar 

  37. Aller, S. G., & Unger, V. M. (2006). Projection structure of the human copper transporter Ctr1 at 6-A resolution reveals a compact trimer with a novel channel-like architecture. Proceedings of the National Academy of Sciences of the United States of America, 103, 3627–3632.

    PubMed  CAS  Google Scholar 

  38. Eisses, J. F., & Kaplan, J. H. (2002). Molecular characterization of hCtr1, the human copper uptake protein. Journal of Biological Chemistry, 277, 29162–29171.

    PubMed  CAS  Google Scholar 

  39. Puig, S., Lee, J., Lau, M., & Thiele, D. J. (2002). Biochemical and genetic analyses of yeast and human high affinity copper transporters suggest a conserved mechanism for copper uptake. Journal of Biological Chemistry, 277, 26021–26030.

    PubMed  CAS  Google Scholar 

  40. Guo, Y., Smith, K., & Patris, M. J. (2004). Cisplatin stabilizes a multimeric complex of the human Ctr1 copper transporter requirement for the extracellular methionine-rich clusters. Journal of Biological Chemistry, 279, 46393–46399.

    PubMed  CAS  Google Scholar 

  41. Eisses, J. F., & Kaplan, J. H. (2005). The mechanism of copper uptake mediated by human Ctr1. A mutational analysis. Journal of Biological Chemistry, 280, 37159–37168.

    PubMed  CAS  Google Scholar 

  42. Arnesano, F., Banci, L., Bertini, I., Cantini, F., Ciofi-Baffoni, S., Huffman, D. L., et al. (2001). Characterization of the binding interface between the copper chaperone Atx1 and the first cytosolic domain of Ccc2 ATPase. Journal of Biological Chemistry, 276, 41365–41376.

    PubMed  CAS  Google Scholar 

  43. Vulpe, C., Levinson, B., Whitney, S., Packman, S., & Gitschier, J. (1993). Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nature Genetics, 3, 7–13.

    PubMed  CAS  Google Scholar 

  44. Bull, P. C., Thomas, G. R., Rommens, J. M., Forbes, J. M., Forbes, J. R., & Cox, D. W. (1993). The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nature Genetics, 5, 327–337.

    PubMed  CAS  Google Scholar 

  45. Camakaris, J., Voskoboinik, I., & Mercer, J. F. (1999). Molecular mechanisms of copper homeostasis. Biochemical and Biophysical Research Communications, 261, 225–232.

    PubMed  CAS  Google Scholar 

  46. DiDonato, M., & Sarkar, B. (1997). Copper transport and its alterations in Menkes and Wilson diseases. Biochimica et Biophysica Acta, 1360, 3–16.

    PubMed  CAS  Google Scholar 

  47. Prohaska, J. R., & Gybina, A. A. (2004). Intracellular copper transport in mammals. Journal of Nutrition, 134, 1003–1006.

    PubMed  CAS  Google Scholar 

  48. Hellman, N. E., & Gitlin, J. D. (2002). Ceruloplasmin metabolism and function. Annual Review of Nutrition, 22, 439–458.

    PubMed  CAS  Google Scholar 

  49. Komatsu, M., Sumizawa, T., Mutoh, M., Chen, Z. S., Tarada, K., Furukawa, T., et al. (2000). Copper transporting P-type adenosine triphosphatase (ATP7B) is associated with cisplatin resistance. Cancer Research, 60, 1313–1316.

    Google Scholar 

  50. Nakayama, K., Kanzaki, A., Terada, K., Mutoh, M., Ogawa, K., Sugiyama, T., et al. (2004). Prognostic value of the cu-transporting ATPase in ovarian carcinoma patients receiving cisplatin-based chemotherapy. Clinical Cancer Research, 10, 2804–2811.

    PubMed  CAS  Google Scholar 

  51. Ohbu, M., Ogawa, K., Konno, S., Kanzaki, A., Terada, K., Sugiyama, T., et al. (2003). Copper-transporting P-type adenosine triphosphatase (ATP7B) is expressed in human gastric carcinoma. Cancer Letters, 189, 33–38.

    PubMed  CAS  Google Scholar 

  52. Samimi, S., Safaei, R., Katano, K., Holzer, A. K., Rochdi, M., Tomioka, M., et al. (2004). Increased expression of the copper efflux transporter ATP7A mediates resistance to cisplatin, carboplatin, and oxaliplatin in ovarian cancer cells. Clinical Cancer Research, 10, 4661–4669.

    PubMed  CAS  Google Scholar 

  53. Samimi, G., Varki, N. M., Wilczynski, S., Safaei, R., Alberts, D. S., & Howell, S. B. (2003). Increase in expression of the copper transporter ATP7A during platinum drug-based treatment is associated with poor survival in ovarian cancer patients. Clinical Cancer Research, 9, 5853–5859.

    PubMed  CAS  Google Scholar 

  54. Strausak, D., La Fontaine, S., Hill, J., Firth, S. D., Lockhart, P. J., & Mercer, J. F. R. (1999). The role of GMXCXXC metal binding sites in the copper-induced redistribution of the Menkes protein. Journal of Biological Chemistry, 274, 11170–11177.

    PubMed  CAS  Google Scholar 

  55. Achila, D., Banci, L., Bertini, I., Bunce, J., Ciofi-Baffoni, S., & Huffman, D. L. (2006). Structure of human Wilson protein domains 5 and 6 and their interplay with domain 4 and the copper chaperone HAH1 in copper uptake. Proceedings of the National Academy of Sciences of the United States of America, 103, 5729–5734.

    Google Scholar 

  56. Banci, L., Bertini, I., Cantini, F., Chasapis, C. T., Hadjiliadis, N., & Rosato, A. (2005). A NMR study of the interaction of a three domain construct of ATP7A with copper (I) and copper (I)-HAH1. Journal of Biological Chemistry, 280, 38259–38263.

    PubMed  CAS  Google Scholar 

  57. Francis, M. J., Jones, E. E., Levy, E. R., Ponnambalam, S., Chelly, J., & Monaco, A. (1998). A Golgi localization signal identified in the Menkes recombinant protein. Human Molecular Genetics, 7, 1245–1252.

    PubMed  CAS  Google Scholar 

  58. Petris, M. J., & Mercer, J. F. (1999). The menkes protein (ATP7A; MNK) cycles via the plasma membrane both in basal and elevated extracellular copper using a C-terminal di-leucine endocytic signal. Human Molecular Genetics, 8, 2107–2115.

    PubMed  CAS  Google Scholar 

  59. Wernimont, A. K., Huffman, D. L., Lamb, A. L., O’Halloran, T. V., & Rosenzweig, A. C. (2000). Structural basis for copper transfer by the metallochaperone for the Menkes/Wilson disease proteins. Nature Structural Biology, 7, 766–771.

    PubMed  CAS  Google Scholar 

  60. Rutherford, J. C., & Bird, A. J. (2004). Metal-responsive transcriptions that regulate iron, zinc, and copper homeostasis in eukaryotic cells. Eukaryotic Cell 3, 1–13.

    PubMed  CAS  Google Scholar 

  61. Graden, J. A., & Winge, D. R. (1997). Copper mediated repression of the activation domain in the yeast Mac1p transcription factor. Proceedings of the National Academy of Sciences of the United States of America, 94, 5550–5555.

    PubMed  CAS  Google Scholar 

  62. Serpe, M., Joshi, A., & Kosman, D. J. (1999). Structure-function analysis of the protein-binding domains of Mac1p, a copper-dependent transcriptional activator of copper uptake in Saccharomyces cerevisiae. Journal of Biological Chemistry, 274, 29211–29219.

    PubMed  CAS  Google Scholar 

  63. Jensen, L. T., & Winge, D. R. (1998). Identification of a copper-induced intramolecular inteaction in the transcription factor Mac1 from Saccharomyces cerevisiae. EMBO Journal, 17, 5400–5408.

    PubMed  CAS  Google Scholar 

  64. Dameron, C. T., Winge, D. R., George, G. N., Sansone, M., Hu, S., & Hamer, D. (1991). A copper-thiolate polynuclear cluster in the ACE1 transcription factor. Proceedings of the National Academy of Sciences of the United States of America, 88, 6127–6131.

    PubMed  CAS  Google Scholar 

  65. Butt, T. R., Sternberg, E. J., Gorman, J. A., Clark, P., Hamer, D., Rosenberg, M., et al. (1984). Copper metallothionein of yeast, structure of the gene, and regulation of expression. Proceedings of the National Academy of Sciences of the United States of America, 81, 3332–3336.

    PubMed  CAS  Google Scholar 

  66. Ooi, C. E., Rabinovich, E., Dancis, A., Bonifacino, J. S., & Klausner, R. D. (1996). Copper-dependent degradation of the Saccharomyces cerevisiae plasma membrane copper transporter Ctr1p in the apparent absence of endocytosis. EMBO Journal 15, 3515–3523.

    PubMed  CAS  Google Scholar 

  67. Yonkovich, J., McKenndry, R., Shi, X., & Zhu, Z. (2002). Copper ion-sensing transcription factor Mac1p post-translationally controls the degradation of its target gene product Ctr1p. Journal of Biological Chemistry, 277, 23981–23984.

    PubMed  CAS  Google Scholar 

  68. Zhou, H., Cadigan, K. M., & Thiele, D. J. (2003). A copper-regulated transporter required for copper acquisition, pigmentation, and specific stages of development in Drosophila melanogaster. Journal of Biological Chemistry, 278, 48210–48218.

    PubMed  CAS  Google Scholar 

  69. Selvaraj, A., Balamurugan, K., Yepiskoposyan, H., Zhou, H., Egli, D., Georgiev, O., et al. (2005). Metal-responsive transcription factor (MTF-1) handles both extremes, copper load and copper starvation, by activating different genes. Genes & Development, 19, 891–896.

    CAS  Google Scholar 

  70. Balamurugan, K., & Schaffner, W. (2006) Copper homeostasis in eukaryotes:Teetering on a tightrope. Biochimica et Biophysica Acta, 1763, 737–746.

    Google Scholar 

  71. Giedroc, D. P., Chen, X., & Apuy, J. L. (2001). Metal response element (MRE)-binding transcription factor-1(MTF-1): Structure, function, and regulation. Antioxidants and Redox Signalling, 3, 577–596.

    CAS  Google Scholar 

  72. Li, Y., Kimura, T., Laity, J. H., & Andrews, G. K. (2006). The zinc-sensing mechanism of mouse MTF-1 involves linker peptides between the zinc fingers. Molecular and Cellular Biology, 26, 5580–5587.

    PubMed  CAS  Google Scholar 

  73. Petris, M. J., Smith, K., Lee, J., & Thieles, D. J. (2003). Copper-stimulated endocytosis and degradation of the human copper transporter, hCtr1. Journal of Biological Chemistry, 278, 9639–9646.

    PubMed  CAS  Google Scholar 

  74. Guo, Y., Smith, K., Lee, J., Thiele, D. J., Patris, & M. J. (2004). Identification of methionine-rich clusters that regulate copper-stimulated endocytosis of the human Ctr1 copper transporter. Journal of Biological Chemistry, 279, 17428–17483.

    PubMed  CAS  Google Scholar 

  75. Eisses, J. F., & Kaplan, J. H. (2002). Molecular characterization of hCtr1, the human copper uptake protein. Journal of Biological Chemistry, 277, 29162–29171.

    PubMed  CAS  Google Scholar 

  76. Eisses, J. F., Chi, Y., & Kaplan, J. H. (2005). Stable plasma membrane levels of hCTR1 mediate cellular copper uptake. Journal of Biological Chemistry, 280, 9635–9639.

    PubMed  CAS  Google Scholar 

  77. Lee, J., Prohaska, J. R., Dagenais, S. L., Glover, T. W., & Thiele, D. J. (2000). Isolation of a murine copper transporter gene, tissue specific expression and functional complementation of a yeast copper transport mutant. Gene, 254, 87–96.

    PubMed  CAS  Google Scholar 

  78. Finney, L. A., & O’Halloran, T. V. (2003). Transition metal speciation in the cell: insights from the chemistry of metal ion receptions. Science, 300, 931–936.

    PubMed  CAS  Google Scholar 

  79. Harrison, M. D., Jones, C. E., Solioz, M., & Dameron, C. T. (2000). Intracellular copper routing: The role of copper chaperones. Trends in Biochemical Sciences, 25, 29–32.

    PubMed  CAS  Google Scholar 

  80. Cobine, P. A., Pierrel, F., & Winge, D. R. (2006) Copper trafficking to the mitochondrion and assembly of copper metalloenzymes. Biochimica et Biophysica Acta, 1763, 759–772.

    Google Scholar 

  81. Mesecke, N., Terziyska, N., Kozany, C., Baumann, F., Neupert, W., Hell, K., et al. (2005). A disulfide relay system in the intermembrane space of mitochondria that mediates protein import. Cell, 121, 1059–1069.

    PubMed  CAS  Google Scholar 

  82. Arnesano, F., Balatri, E., Banci, L., Bertini, I., & Winge, D. R. (2005). Folding studies of Cox 17 reveal an important interplay of cysteine oxidation and copper binding. Structure, 13, 13–722.

    Google Scholar 

  83. Schmidt, P. J., Kunst, C., & Culotta, V. C. (2000). Copper activation of superoxide dismutase 1 (SOD1) in vivo. Role for protein-protein interactions with the copper chaperone for SOD1. Journal of Biological Chemistry, 275, 33771–33776.

    PubMed  CAS  Google Scholar 

  84. Wong, P. C., Waggoner, D., Subramaniam, J. R., Tessarollo, L., Bartnikas, T. B., Culotta, V. C., et al. (2000). Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase. Proceedings of the National Academy of Sciences of the United States of America, 97, 2886–2891.

    PubMed  CAS  Google Scholar 

  85. Culotta, V. C., Klomp, L. W., Strain, J., Casareno, R. L., Krems, B., & Gitlin, J. D. (1997). The copper chaperone for superoxide dismutase. Journal of Biological Chemistry, 272, 23469–23472.

    PubMed  CAS  Google Scholar 

  86. Lamb, A. L., Torres, A. S., O’Halloran, T. V., & Rosenzweig, A. C. (2001). Heterodimeric structure of superoxide dismutase in complex with its metallochaperone. Nature Structural Biology, 8, 751–755.

    PubMed  CAS  Google Scholar 

  87. Molenaar, C., Teuben, J.-M., Heetebrij, R. J., Tanke, H. J., & Reedijk, J. (2000). New insights in the cellular processing of platinum antitumor compounds, using fluorophore-labeled platinum complexes and digital fluorescence microscopy. Journal of Biological Inorganic Chemistry, 5, 655–665.

    PubMed  CAS  Google Scholar 

  88. Safaei, R., Katano, K., Larson, B. J., Samimi, G., Holzer, A. K., Naerdemann, W., et al. (2005). Intracellular localization and trafficking of fluoroscein-labeled cisplatin in human ovarian carcinoma cells. Clinical Cancer Research, 11, 756–767.

    PubMed  CAS  Google Scholar 

  89. Kasahara, K., Fujiwara, Y., Nishio, K., Ohmori, T., Sugimoto, Y., Komiya, K., et al. (1991). Metallothionein content correlates with the sensitivity of human small cell lung cancer lines to cisplatin. Cancer Research, 51, 3237–3242.

    PubMed  CAS  Google Scholar 

  90. Kelley, S. L., Basu, A., Teicher, B. A., Hacker, M. P., Hamer, D. H., & Lazo, J. S. (1988). Overexpression of metallothionein confers resistance to anticancer agents. Science, 241, 1813–1815.

    PubMed  CAS  Google Scholar 

  91. Smith, D. J., Jaggi, M., Zhang, W., Galich, A., Du, C., Sterrett, S. P., et al. (2006). Metallothioneins and resistance to cisplatin and radiation in prostate cancer. Urology, 67, 1341–1347.

    PubMed  Google Scholar 

  92. Waalkes, M. P., Liu, J., Kasprzak, K. S., & Diwan, B. A. (2006). Hypersusceptibility to cisplatin carcinogenicity in metallothionein-III double knockout mice: Production of hepatocellular carcinoma at clinically relevant doses. International Journal of Cancer, 119, 28–32.

    CAS  Google Scholar 

  93. Freedman, J. H., Ciriolo, M. R., & Peisach, J. (1989). The role of glutathione in copper metabolism and toxicity. Journal of Biological Chemistry, 264, 5598–5605.

    PubMed  CAS  Google Scholar 

  94. Steineback, O. M., & Wolterbeek, H. T. (1994). Role of cytosolic copper, metallothionein and glutathione in copper toxicity in rat hepatoma tissue culture cells. Toxicology, 92, 75–90.

    Google Scholar 

  95. Circiolo, M. R., Desideri, M., Paci, M., & Rotilo, G. (1990). Reconstitution of Cu, Zn-superoxidedismutase by the Cu(I) glutathione complex. Journal of Biological Chemistry, 265, 11030–11034.

    Google Scholar 

  96. Lamb, A. L., O’Halloran, T. V., & Rosenzweig, A. C. (2000). Structural basis for copper transfer by the metalloperone for the Menkes/Wilson disease proteins. Nature Structural Biology, 7, 766–771.

    PubMed  Google Scholar 

  97. Siddik, Z. H. (2002). Biochemical and molecular mechanisms of cisplatin resistance. Cancer Treatment and Research, 112, 263–284.

    PubMed  CAS  Google Scholar 

  98. Ishikawa, T., Bao, J. J., Yamane, Y., Akimaru, K., Frindrich, K., Wright, C. D., et al. (1996). Coordinated induction of MRP/GS-X pump and gamma-glutamylcysteine synthetase by heavy metals in human leukemia cells. Journal of Biological Chemistry, 271, 4981–4988.

    Google Scholar 

  99. Ishikawa, T., & Ali-Osman, F. (1993). Glutathione-associated cis-diamminedichloroplatinum(II) metabolism and ATP-dependent efflux from leukemia cells. Molecular characterization of glutathione-platinum complex and its biological significance. Journal of Biological Chemistry, 268, 20116–20125.

    PubMed  CAS  Google Scholar 

  100. Taniguchi, K., Wada, M., Kohno, K., Nakamura, T., Kawabe, T., & Kawakami, M. (1996). A human canalicular multispecific organic anion transporter (cMOAT) gene is overexpressed in cisplatin-resistant human cancer cell lines with decreased drug accumulation. Cancer Research, 56, 4124–4129.

    PubMed  CAS  Google Scholar 

  101. Liedert, B., Materna, V., Schadendorf, G. L., Thomale, J., & Lage, H. (2003). Overexpression of cMOAT(MRP2/ABCC2) is associated with decreased formation of platinum-DNA adducts and decreased G2-arrest in melanoma cells resistant to cisplatin. Journal of Investigative Dermatology, 121, 172–176.

    PubMed  CAS  Google Scholar 

  102. Cui, Y., Konig, J., Buchholz, J. K., Spring, H., Leier, I., & Keppler, D. (1999). Drug resistance and ATP-dependent conjugate transport mediated by the apical multidrug resistance protein, MRP2, permanently expressed in human and canine cells. Molecular Pharmacology, 55, 929–937.

    PubMed  CAS  Google Scholar 

  103. Koike, K., Kawabe, T., Tanaka, T., Toh, S., Uchiumi, T., Wada, M., et al. (1997). A canalicular multispecific organic anion transporter (cMOAT) antisense cDNA enhance drug sensitivity in human hepatic cancer cells. Cancer Research, 57, 5475–5479.

    PubMed  CAS  Google Scholar 

  104. Minamino, T., Tamai, M., Itoh, Y., Tatsumi, Y., Nomura, M., Yokogawa, K., et al. (1999). In vivo cisplatin resistance depending upon canalicular multispecific organic anion transporter (cMOAT). Japanese Journal of Cancer Research, 90, 1171–1178.

    PubMed  CAS  Google Scholar 

  105. Ishikawa, T., Nakagawa, H., & Kuo, M. T. (2007). The GS-X pump/multidrug resistance protein (MRP): Role of glutathione in their function and gene regulation. Nova Scotia Review (in press).

  106. Chauhan, S. S., Liang, X. J., Su, A. W., Pai-Panandiker, A., Shen, D. W., Hanover, J. A., et al. (2003). Reduced endocytosis and altered lysosome function in cisplatin-resistant cell lines. British Journal of Cancer, 88, 1327–1334.

    PubMed  CAS  Google Scholar 

  107. Liang, X. J., Mukherjee, S., Shen, D. W., Maxfield, F. R., & Gottesman, M. M. (2006). Endocytic recycling compartments altered in cisplatin-resistant cancer cells. Cancer Research, 66, 2346–2353.

    PubMed  CAS  Google Scholar 

  108. Lee, J., Prohaska, J. R., & Thiele, D. J. (2001). Essential role for mammalian copper transporter Ctr1 copper homeostasis and embryonic development. Proceedings of the National Academy of Sciences of the United States of America, 98, 6842–6847.

    PubMed  CAS  Google Scholar 

  109. Kuo, Y. M., Zhou, B., Cosco, D., & Gitschier, J. (2001). The copper transporter Ctr1 provides an essential function in mammalian embryonic development. Proceedings of the National Academy of Sciences of the United States of America, 98, 6836–6841.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Macus Tien Kuo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuo, M.T., Chen, H.H.W., Song, IS. et al. The roles of copper transporters in cisplatin resistance. Cancer Metastasis Rev 26, 71–83 (2007). https://doi.org/10.1007/s10555-007-9045-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-007-9045-3

Keywords

Navigation