Skip to main content
Log in

Are biventricular systolic functions impaired in patient with coronoray slow flow? A prospective study with three dimensional speckle tracking

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The newly developed three dimensional speckle-tracking echocardiography (3D-STE) technology provides quick and comprehensive quantitative assessment of biventricular myocardial dynamics. The impact of coronary slow flow phenomenon (CSFP) on biventricular functions has not been comprehensively evaluated using this new technology. Therefore, the aim of this study was to evaluate the effects of CSFP on biventricular systolic functions using 3D-STE. Forty patients with CSFP and otherwise normal coronary arteries (NCAs) and 40 age- and sex-matched controls with normal coronary angiograms (CAGs) were prospectively enrolled. Biventricular systolic function was evaluated by 3D-STE. Left ventricular (LV) global longitudinal, circumferential and radial strains, ejection fraction (EF) were significantly lower and LV end-systolic volume (ESV) was significantly higher in the CSFP group compared to the control group. There were no significant differences in LV mass, LV end-diastolic volume (EDV) or LV stroke volume (SV). Additionally, Right ventricular (RV) free wall, septal wall and global longitudinal strains, and RV EF were significantly lower in the CSFP group, but there were no significant differences in RV EDV, ESV and RV SV. The present study demonstrated that CSFP has a notable negative effect on not only 3D strain parameters but also biventricular EF. There was a strong correlation between the strain parameters of the affected vessel’s myocardial area and the TIMI frame count of same vessel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tambe AA, Demany MA, Zimmerman HA, Mascarenhas E (1972) Angina pectoris and slow flow velocity of dye in coronary arteries-a new angiographic finding. Am Heart J 84:66–71

    Article  CAS  PubMed  Google Scholar 

  2. Wang X, Nie SP (2011) The coronary slow flow phenomenon: Characteristics, mechanisms and implications. Cardiovasc Diagn Ther 1:37–43

    PubMed  PubMed Central  Google Scholar 

  3. Sezgin AT, Sigirci M, Barutcu I, Topal E, Sezgin N, Ozdemir R et al (2003) Vascular endothelial function in patients with slow coronary flow. Coron Artery Dis 14:155–161

    Article  PubMed  Google Scholar 

  4. Masseri M, Yorom R, Gotsman MS, Hasin Y (1986) Histologic evidence for small vessel coronary artery disease in patients with angina pectoris and patent large coronary arteries. Circulation 74:964–972

    Article  Google Scholar 

  5. Mangieri M, Machiarelli G, Ciavolella M, Barilla F, Avella A, Martinotti A (1996) Slow coronary flow: clinical and histopathological features in patients with otherwise normal epicardial coronary arteries. Cathet Cardiovasc Diagn 37:375–381

    Article  CAS  PubMed  Google Scholar 

  6. Erbay AR, Turhan H, Senen K, Yetkin O, Yasar AS, Sezgin AT et al (2004) Documentation of slow coronary flow by the thrombolysis in myocardial infarction frame count in habitual smokers with angiographically normal coronary arteries. Heart Vessels 19:271–274

    Article  PubMed  Google Scholar 

  7. Camsari A, Pekdemir H, Cicek D, Polat G, Akkus MN, Doven O et al (2003) Endothelin-1 and nitric oxide concentrations and their response to exercise in patients with slow coronary flow. Circ J 67:1022–1028

    Article  CAS  Google Scholar 

  8. Sezgin N, Barutcu I, Sezgin AT, Gullu H, Turkmen M, Esen AM et al (2005) Plasma nitric oxide levels and its role in slow coronary flow phenomenon. Int Heart J 46:373–382

    Article  CAS  PubMed  Google Scholar 

  9. Ekmekci A, Güngör B, Özcan KS, Abaci N, Ilhan E, Ekmekci SS et al (2013) Evaluation of coronary microvascular function and nitric oxide synthase intron 4a/b polymorphism in patients with coronary slow flow. Coron Artery Dis 24:461–467

    Article  PubMed  Google Scholar 

  10. Beltrame JF (2012) Defining the coronary slow flow phenomenon. Circ J 76:818–20

    Article  PubMed  Google Scholar 

  11. Gibson CM, Cannon CP, Daley WL, Dodge JT Jr, Alexander B Jr, Marble SJ et al (1996) TIMI frame count: a quantitative method of assessing coronary artery flow. Circulation 93:879–888

    Article  CAS  PubMed  Google Scholar 

  12. Kleijn SA, Aly MF, Terwee CB, van Rossum AC, Kamp O (2012) Reliability of left ventricular volumes and function measurements using three-dimensional speckle tracking echocardiography. Eur Heart J Cardiovasc Imaging 13:159–168

    Article  PubMed  Google Scholar 

  13. Kleijn SA, Brouwer WP, Aly MF, Russel IK, de Roest GJ, Beek AM et al (2012) Comparison between three-dimensional speckle-tracking echocardiography and cardiac magnetic resonance imaging for quantification of left ventricular volumes and function. Eur Heart J Cardiovasc Imaging 13:834–839

    Article  PubMed  Google Scholar 

  14. Galderisi M, Esposito R, Schiano-Lomoriello V, Santoro A, Ippolito R, Schiattarella P et al (2012) Correlates of global area strain in native hypertensive patients: a threedimensional speckle-tracking echocardiography study. Eur Heart J Cardiovasc Imaging 13:730–738

    Article  PubMed  Google Scholar 

  15. Schueler R, Sinning JM, Momcilovic D, Weber M, Ghanem A, Werner N et al (2012) Three dimensional speckle-tracking analysis of left ventricular function after transcatheter aortic valve implantation. J Am Soc Echocardiogr 25:827–834

    Article  PubMed  Google Scholar 

  16. Reant P, Barbot L, Touche C, Dijos M, Arsac F, Pillois X et al (2012) Evaluation of global left ventricular systolic function using three-dimensional echocardiography speckle tracking strain parameters. J Am Soc Echocardiogr 25:68–79

    Article  PubMed  Google Scholar 

  17. Urbano-Moral JA, Arias-Godinez JA, Ahmad R, MalikR, Kiernan MS, Denofrio D et al (2013) Evaluation of myocardial mechanics with three-dimensional speckle tracking echocardiography in heart transplant recipients: comparison with two-dimensional speckle tracking and relationship with clinical variables. Eur Heart J Cardiovasc Imaging 14:1167–1173

    Article  PubMed  Google Scholar 

  18. Pérez de Isla L, Balcones DV, Ferna´ndez-Golfı´n C, Marcos-Alberca P, Almerı´a C, Rodrigo JL et al (2009) Three-dimensional-wall motion tracking: a new and faster tool for myocardial strain assessment: comparison with two-dimensional-wall motion tracking. J Am Soc Echocardiogr 22:325–330

    Article  PubMed  Google Scholar 

  19. Nesser HJ, Mor-Avi V, Gorissen W, Weinert L, Steringer-Mascherbauer R, Niel J et al (2009) Quantification of left ventricular volumes using three-dimensional echocardiographic speckle tracking: comparison with MRI. Eur Heart J 30:1565–1573

    Article  PubMed  Google Scholar 

  20. Maffessanti F, Nesser HJ, Weinert L, Steringer-Mascherbauer R, Niel J, Gorissen W et al (2009) Quantitative evaluation of regional left ventricular function using threedimensional speckle tracking echocardiography in patients with and without heart disease. Am J Cardiol 104:1755–1762

    Article  PubMed  Google Scholar 

  21. Saito K, Okura H, Watanabe N, Hayashida A, Obase K, Imai K et al (2009) Comprehensive evaluation of left ventricular strain using speckle tracking echocardiography in normal adults: comparison of three-dimensional and two-dimensional approaches. J Am Soc Echocardiogr 22:1025–1030

    Article  PubMed  Google Scholar 

  22. Kleijn SA, Aly MF, Terwee CB, van Rossum AC, Kamp O (2011) Three-dimensional speckle tracking echocardiography for automatic assessment of global and regional left ventricular function based on area strain. J Am Soc Echocardiogr 24:314–321

    Article  PubMed  Google Scholar 

  23. Seo Y, Ishizu T, Enomoto Y, Sugimori H, Aonuma K (2011) Endocardial surface area tracking for assessment of regional LV wall deformation with 3D speckle tracking imaging. JACC Cardiovasc Imaging 4:358–365

    Article  PubMed  Google Scholar 

  24. Lang RM, Badano LP, Tsang W, Adams DH, Agricola E, Buck T et al (2012) American Society of Echocardiography; European Association of Echocardiography. EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. J Am Soc Echocardiogr 25:3–46

    Article  PubMed  Google Scholar 

  25. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L et al (2016) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the american society of echocardiography and the European association of cardiovascular imaging. Eur Heart J Cardiovasc Imaging 17:412

    Article  Google Scholar 

  26. Nurkalem Z, Gorgulu S, Uslu N, Orhan AL, Alper AT, Erer B et al (2009) Longitudinal left ventricular systolic function is impaired in patients with coronary slow flow. Int J Cardiovasc Imaging 25:25–32

    Article  PubMed  Google Scholar 

  27. Zencir C, Cetin M, Güngör H, Karaman K, Akgüllü C, Eryılmaz U et al (2013) Evaluation of left ventricular systolic and diastolic functions in patients with coronary slow flow phenomenon. Turk Kardiyol Dern Ars 41:691–696

    Article  PubMed  Google Scholar 

  28. Nie SP, Geng LL, Wang X, Zhang XS, Yang Y, Liu BQ et al (2010) Can transthoracic doppler echocardiography be used to detect coronary slow flow phenomenon? Chin Med J (Engl) 123:3529–3533

    Google Scholar 

  29. Altunkaş F, Koc F, Ceyhan K, Celik A, Kadi H, Karayakali M, Ozbek K et al (2014) The effect of slow coronary flow on right and left ventricular performance. Med Princ Pract 23:34–39

    Article  PubMed  Google Scholar 

  30. Yılmaz M, Arıcan Özlük F, Peket T, Bekler A, Karaağaç K (2013) Right ventricular function and its relation with TIMI frame count in the coronary slow flow phenomenon. Turk J Med Sci 43:46–51

    Google Scholar 

  31. Seo Y, Ishizu T, Enomoto Y, Sugimori H, Yamamoto M, Machino T et al (2009) Validation of 3-dimensional speckle tracking imaging to quantify regional myocardial deformation. Circ Cardiovasc Imaging 2:451–459

    Article  PubMed  Google Scholar 

  32. Luis SA, Yamada A, Khandheria BK, Speranza V, Benjamin A, Ischenko M et al (2014) Use of three-dimensional speckle-tracking echocardiography for quantitative assessment of global left ventricular function: a comparative study to three-dimensional echocardiography. J Am Soc Echocardiogr 27:285–291

    Article  PubMed  Google Scholar 

  33. Jenkins C, Bricknell K, Hanekom L, Marwick TH (2004) Reproducibility and accuracy of echocardiographic measurements of left ventricular parameters using real-time three-dimensional echocardiography. J Am Coll Cardiol 44:878–886

    Article  PubMed  Google Scholar 

  34. Nikitin NP, Constantin C, Loh PH, Ghosh J, Lukaschuk EI, Bennett A et al (2006) New generation 3-dimensional echocardiography for left ventricular volumetric and functional measurements: comparison with cardiac magnetic resonance. Eur J Echocardiogr 7:365–372

    Article  PubMed  Google Scholar 

  35. Jacobs LD, Salgo IS, Goonewardena S, Weinert L, Coon P, Bardo D et al (2006) Rapid online quantification of left ventricular volume from real-time three-dimensional echocardiographic data. Eur Heart J 27:460–468

    Article  PubMed  Google Scholar 

  36. Cameli M, Mondillo S, Solari M, Righini FM, Andrei V, Contaldi C et al (2016) Echocardiographic assessment of left ventricular systolic function: from ejection fraction to torsion. Heart Fail Rev 21:77–94

    Article  PubMed  Google Scholar 

  37. Thorstensen A, Dalen H, Hala P, Kiss G, D’hooge J, Torp H et al (2013) Three–dimensional echocardiography in the evaluation of global and regional function in patients with recent myocardial infarction: a comparison with magnetic resonance imaging. Echocardiography 30:682–692

    Article  PubMed  Google Scholar 

  38. Li CM, Li C, Bai WJ, Zhang XL, Tang H, Qing Z et al (2013) Value of three–dimensional speckle–tracking in detecting left ventricular dysfunction in patients with aortic valvular diseases. J Am Soc Echocardiogr 26:1245–1252

    Article  PubMed  Google Scholar 

  39. Sun YJ, Wang F, Zhang RS, Wang HY, Yang CG, Cai J et al (2015) Incremental value of resting three-dimensional speckle-tracking echocardiography in detecting coronary artery disease. Exp Ther Med 9:2043–6

    PubMed  PubMed Central  Google Scholar 

  40. Tamborini G, Muratori M, Brusoni D, Celeste F, Maffessanti F, Caiani EG et al (2009) Is right ventricular systolic function reduced after cardiac surgery? a two- and three-dimensional echocardiographic study. Eur J Echocardiogr 10:630–634

    Article  PubMed  Google Scholar 

  41. Tamborini G, Brusoni D, Torres Molina JE, Galli CA, Maltagliati A, Muratori M et al (2008) Feasibility of a new generation three-dimensional echocardiography for right ventricular volumetric and functional measurements. Am J Cardiol 102:499–505

    Article  PubMed  Google Scholar 

  42. Seo Y, Ishizu T, Atsumi A, Kawamura R, Aonuma K (2014) Three-dimensional speckle tracking echocardiography. Circ J 78:1290–1301

    Article  PubMed  Google Scholar 

  43. Kossaify A (2015) Echocardiographic assessment of the right ventricle, from the conventional approach to speckle tracking and three-dimensional imaging, and insights into the “right way” to explore the forgotten chamber. Clin Med Insights Cardiol 9:65–75

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K et al (2010) Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 23:685–713

    Article  PubMed  Google Scholar 

  45. Beltrame JF, Limaye SB, Horowitz JD (2002) The coronary slow flow phenomenon–a new coronary microvascular disorder. Cardiology 97:197–202

    Article  PubMed  Google Scholar 

  46. Wozakowska-Kapłon B, Niedziela J, Krzyzak P, Stec S (2009) Clinical manifestations of slow coronary flow from acute coronary syndrome to serious arrhythmias. Cardiol J 16:462–468

    PubMed  Google Scholar 

  47. Saya S, Hennebry TA, Lozano P, Lazzara R, Schechter E (2008) Coronary slow flow phenomenon and risk for sudden cardiac death due to ventricular arrhythmias: a case reportand review of literature. Clin Cardiol 31:352–355

    Article  PubMed  Google Scholar 

  48. Yılmaz H, Gungor B, Kemaloglu T, Sayar N, Erer B, Yilmaz M et al (2014) The presence of fragmented QRS on 12-lead ECG in patients with coronary slow flow. Kardiol Pol 72:14–19

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuğba Kemaloğlu Öz.

Ethics declarations

Conflict of interest

None declared.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kemaloğlu Öz, T., Eren, M., Atasoy, I. et al. Are biventricular systolic functions impaired in patient with coronoray slow flow? A prospective study with three dimensional speckle tracking. Int J Cardiovasc Imaging 33, 675–681 (2017). https://doi.org/10.1007/s10554-016-1054-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-016-1054-2

Keywords

Navigation