Skip to main content
Log in

Menstrual cycle characteristics and steroid hormone, prolactin, and growth factor levels in premenopausal women

  • Original paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Purpose

Menstrual cycle characteristics are markers of endocrine milieu. However, associations between age at menarche and adulthood sex steroid hormone levels have been inconsistent, and data on menstrual characteristics and non-sex steroid hormones are sparse.

Methods

We assessed the relations of menstrual characteristics with premenopausal plasma sex steroid hormones, sex hormone binding globulin (SHBG), prolactin, and growth factors among 2,745 premenopausal women (age 32–52) from the Nurses’ Health Study II. Geometric means and tests for trend were calculated using multivariable general linear models.

Results

Early age at menarche was associated with higher premenopausal early-follicular free estradiol (percent difference < 12 vs. > 13 years = 11%), early-follicular estrone (7%), luteal estrone (7%), and free testosterone (8%) (all p trend < 0.05). Short menstrual cycle length at age 18–22 was associated with higher early-follicular total (< 26 vs. > 39 days = 18%) and free estradiol (16%), early-follicular estrone (9%), SHBG (7%), lower luteal free estradiol (− 14%), total (− 6%), and free testosterone (− 15%) (all p trend < 0.05). Short adult menstrual length was associated with higher early-follicular total estradiol (< 26 vs. > 31 days = 14%), SHBG (10%), lower luteal estrone (− 8%), progesterone (− 9%), total (− 11%) and free testosterone (− 25%), and androstenedione (− 14%) (all p trend < 0.05). Irregularity of menses at 18–22 was associated with lower early-follicular total (irregular vs. very regular = − 14%) and free estradiol (− 14%), and early-follicular estrone (− 8%) (All p trend < 0.05). Irregularity of adult menstrual cycle was associated with lower luteal total estradiol (irregular vs. very regular = − 8%), SHBG (− 3%), higher total (8%), and free testosterone (11%) (all p trend < 0.05).

Conclusions

Early-life and adulthood menstrual characteristics are moderately associated with mid-to-late reproductive year’s hormone concentrations. These relations of menstrual characteristics with endogenous hormone levels could partially account for associations between menstrual characteristics and reproductive cancers or other chronic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rockhill B, Moorman PG, Newman B (1998) Age at menarche, time to regular cycling, and breast cancer (North Carolina, United States). Cancer Causes Control 9(4):447–453

    Article  CAS  PubMed  Google Scholar 

  2. Missmer SA, Hankinson SE, Spiegelman D, Barbieri RL, Malspeis S, Willett WC et al (2004) Reproductive history and endometriosis among premenopausal women. Obstet Gynecol 104(5 Pt 1):965–974

    Article  PubMed  Google Scholar 

  3. Lakshman R, Forouhi NG, Sharp SJ, Luben R, Bingham SA, Khaw KT et al (2009) Early age at menarche associated with cardiovascular disease and mortality. J Clin Endocrinol Metab 94(12):4953–4960

    Article  CAS  PubMed  Google Scholar 

  4. Gong TT, Wu QJ, Vogtmann E, Lin B, Wang YL (2013) Age at menarche and risk of ovarian cancer: a meta-analysis of epidemiological studies. Int J Cancer 132(12):2894–2900

    Article  CAS  PubMed  Google Scholar 

  5. MacMahon B, Trichopoulos D, Brown J, Andersen AP, Cole P, deWaard F et al (1982) Age at menarche, urine estrogens and breast cancer risk. Int J Cancer 30(4):427–431

    Article  CAS  PubMed  Google Scholar 

  6. Apter D, Reinila M, Vihko R (1989) Some endocrine characteristics of early menarche, a risk factor for breast cancer, are preserved into adulthood. Int J Cancer 44(5):783–787

    Article  CAS  PubMed  Google Scholar 

  7. Bernstein L, Pike MC, Ross RK, Henderson BE (1991) Age at menarche and estrogen concentrations of adult women. Cancer Causes Control 2(4):221–225

    Article  CAS  PubMed  Google Scholar 

  8. Ingram DM, Nottage EM, Willcox DL, Roberts A (1990) Oestrogen binding and risk factors for breast cancer. Br J Cancer 61(2):303–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Verkasalo PK, Thomas HV, Appleby PN, Davey GK, Key TJ (2001) Circulating levels of sex hormones and their relation to risk factors for breast cancer: a cross-sectional study in 1092 pre- and postmenopausal women (United Kingdom). Cancer Causes Control 12(1):47–59

    Article  CAS  PubMed  Google Scholar 

  10. Tworoger SS, Sluss P, Hankinson SE (2006) Association between plasma prolactin concentrations and risk of breast cancer among predominately premenopausal women. Cancer Res 66(4):2476–2482

    Article  CAS  PubMed  Google Scholar 

  11. Missmer SA, Spiegelman D, Bertone-Johnson ER, Barbieri RL, Pollak MN, Hankinson SE (2006) Reproducibility of plasma steroid hormones, prolactin, and insulin-like growth factor levels among premenopausal women over a 2- to 3-year period. Cancer Epidemiol Biomark Prev 15(5):972–978

    Article  CAS  Google Scholar 

  12. Stunkard AJ, Sorensen T, Schulsinger F (1983) Use of the Danish adoption register for the study of obesity and thinness. Res Publ 60:115–120

    CAS  Google Scholar 

  13. Rosner B (1983) Percentage points for a generalized ESD many-outlier procedure. Technometrics 25:165–172

    Article  Google Scholar 

  14. Rosner B, Cook N, Portman R, Daniels S, Falkner B (2008) Determination of blood pressure percentiles in normal-weight children: some methodological issues. Am J Epidemiol 167(6):653–666

    Article  CAS  PubMed  Google Scholar 

  15. Eliassen AH, Missmer SA, Tworoger SS, Spiegelman D, Barbieri RL, Dowsett M et al (2006) Endogenous steroid hormone concentrations and risk of breast cancer among premenopausal women. J Natl Cancer Inst 98(19):1406–1415

    Article  CAS  PubMed  Google Scholar 

  16. Hosmer DW, Lemeshow S (1989) Applied logistic regression. Wiley, New York

    Google Scholar 

  17. Yen S.S.C., Jaffe RB (1991) Reproductive endocrinology, 3rd edn. W.B. Saunders Company, Philadelphia

    Google Scholar 

  18. Apter D, Bolton NJ, Hammond GL, Vihko R (1984) Serum sex hormone-binding globulin during puberty in girls and in different types of adolescent menstrual cycles. Acta Endocrinol 107(3):413–419

    CAS  PubMed  Google Scholar 

  19. Westhoff C, Gentile G, Lee J, Zacur H, Helbig D (1996) Predictors of ovarian steroid secretion in reproductive-age women. Am J Epidemiol 144(4):381–388

    Article  CAS  PubMed  Google Scholar 

  20. Moore JW, Key TJ, Wang DY, Bulbrook RD, Hayward JL, Takatani O (1991) Blood concentrations of estradiol and sex hormone-binding globulin in relation to age at menarche in premenopausal British and Japanese women. Breast Cancer Res Treat 18(Suppl 1):S47–S50

    Google Scholar 

  21. Windham GC, Elkin E, Fenster L, Waller K, Anderson M, Mitchell PR et al (2002) Ovarian hormones in premenopausal women: variation by demographic, reproductive and menstrual cycle characteristics. Epidemiology 13(6):675–684

    Article  PubMed  Google Scholar 

  22. Apter D, Vihko R (1985) Premenarcheal endocrine changes in relation to age at menarche. Clin Endocrinol (Oxf) 22(6):753–760

    Article  CAS  Google Scholar 

  23. Feigelson HS, Shames LS, Pike MC, Coetzee GA, Stanczyk FZ, Henderson BE (1998) Cytochrome P450c17alpha gene (CYP17) polymorphism is associated with serum estrogen and progesterone concentrations. Cancer Res 58(4):585–587

    CAS  PubMed  Google Scholar 

  24. Garcia-Closas M, Herbstman J, Schiffman M, Glass A, Dorgan JF (2002) Relationship between serum hormone concentrations, reproductive history, alcohol consumption and genetic polymorphisms in pre-menopausal women. Int J Cancer 102(2):172–178

    Article  CAS  PubMed  Google Scholar 

  25. Lai J, Vesprini D, Chu W, Jernstrom H, Narod SA (2001) CYP gene polymorphisms and early menarche. Mol Genet Metab 74(4):449–457

    Article  CAS  PubMed  Google Scholar 

  26. Ambrosone CB, Moysich KB, Furberg H, Freudenheim JL, Bowman ED, Ahmed S et al (2003) CYP17 genetic polymorphism, breast cancer, and breast cancer risk factors. Breast Cancer Res 5(2):R45–R51

    Article  Google Scholar 

  27. Wronka I (2010) Association between BMI and age at menarche in girls from different socio-economic groups. Anthropologischer Anzeiger 68(1):43–52

    Article  Google Scholar 

  28. Dorgan JF, Reichman ME, Judd JT, Brown C, Longcope C, Schatzkin A et al (1995) Relationships of age and reproductive characteristics with plasma estrogens and androgens in premenopausal women. Cancer Epidemiol Biomark Prev 4(4):381–386

    CAS  Google Scholar 

  29. Moore JW, Key TJ, Clark GM, Hoare SA, Allen DS, Wang DY (1987) Sex-hormone-binding globulin and breast cancer risk. Anticancer Res 7(5B):1039–1047

    CAS  PubMed  Google Scholar 

  30. Pierce MB, Leon DA (2005) Age at menarche and adult BMI in the Aberdeen children of the 1950s cohort study. Am J Clin Nutr 82(4):733–739

    CAS  PubMed  Google Scholar 

  31. Tchernof A, Despres JP (2000) Sex steroid hormones, sex hormone-binding globulin, and obesity in men and women. Horm Metab Res 32(11–12):526–536

    Article  CAS  PubMed  Google Scholar 

  32. Tchernof A, Toth MJ, Poehlman ET (1999) Sex hormone-binding globulin levels in middle-aged premenopausal women. Associations with visceral obesity and metabolic profile. Diabetes Care 22(11):1875–1881

    Article  CAS  PubMed  Google Scholar 

  33. Pasquali R, Vicennati V, Bertazzo D, Casimirri F, Pascal G, Tortelli O et al (1997) Determinants of sex hormone-binding globulin blood concentrations in premenopausal and postmenopausal women with different estrogen status. Virgilio-Menopause-Health Group Metab 46(1):5–9

    CAS  Google Scholar 

  34. Mumford SL, Steiner AZ, Pollack AZ, Perkins NJ, Filiberto AC, Albert PS et al (2012) The utility of menstrual cycle length as an indicator of cumulative hormonal exposure. J Clin Endocrinol Metab 97(10):E1871-9

    Article  PubMed  Google Scholar 

  35. Fortner RT, Hankinson SE, Schairer C, Xu X, Ziegler RG, Eliassen AH (2012) Association between reproductive factors and urinary estrogens and estrogen metabolites in premenopausal women. Cancer Epidemiol Biomark Prev 21(6):959–968

    Article  CAS  Google Scholar 

  36. Waller K, Swan SH, Windham GC, Fenster L, Elkin EP, Lasley BL (1998) Use of urine biomarkers to evaluate menstrual function in healthy premenopausal women. Am J Epidemiol 147(11):1071–1080

    Article  CAS  PubMed  Google Scholar 

  37. Speroff LAFM (2005) Clinical gynecologic endocrinology and infertility. Lippincott Williams & Wilkin, Philadelphia, pp 223–224

    Google Scholar 

  38. Harlow SD, Baird DD, Weinberg CR, Wilcox AJ (2000) Urinary oestrogen patterns in long follicular phases. Hum Reprod 15(1):11–16

    Article  CAS  PubMed  Google Scholar 

  39. Wei S, Jones G, Thomson R, Otahal P, Dwyer T, Venn A (2010) Menstrual irregularity and bone mass in premenopausal women: cross-sectional associations with testosterone and SHBG. BMC Musculoskelet Disord 11:288

    Article  PubMed  PubMed Central  Google Scholar 

  40. Van Anders SM, Watson NV (2006) Menstrual cycle irregularities are associated with testosterone levels in healthy premenopausal women. Am J Hum Biol 18(6):841–844

    Article  PubMed  Google Scholar 

  41. Speroff LAFM (2005) Clinical gynecologic endocrinology and infertility. Lippincott Williams & Wilkin, Philadelphia, p 465

    Google Scholar 

  42. Lukanova A, Toniolo P, Akhmedkhanov A, Hunt K, Rinaldi S, Zeleniuch-Jacquotte A et al (2001) A cross-sectional study of IGF-I determinants in women. Eur J Cancer Prev 10(5):443–452

    Article  CAS  PubMed  Google Scholar 

  43. Johansson H, Baglietto L, Guerrieri-Gonzaga A, Bonanni B, Mariette F, Macis D et al (2004) Factors associated with circulating levels of insulin-like growth factor-I and insulin-like growth factor binding protein-3 in 740 women at risk for breast cancer. Breast Cancer Res Treat 88(1):63–73

    Article  CAS  PubMed  Google Scholar 

  44. Key TJ, Appleby PN, Reeves GK, Roddam AW (2010) Insulin-like growth factor 1 (IGF1), IGF binding protein 3 (IGFBP3), and breast cancer risk: pooled individual data analysis of 17 prospective studies. Lancet Oncol 11(6):530–542

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the Nurses’ Health Study II participants for their continuing contributions.

Funding

This study was supported by NIH grants UM1 CA176726, CA67262, CA138580, and CA50385.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie V. Farland.

Ethics declarations

Disclosure

The authors have nothing to disclose.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farland, L.V., Mu, F., Eliassen, A.H. et al. Menstrual cycle characteristics and steroid hormone, prolactin, and growth factor levels in premenopausal women. Cancer Causes Control 28, 1441–1452 (2017). https://doi.org/10.1007/s10552-017-0971-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-017-0971-2

Keywords

Navigation