Skip to main content

Advertisement

Log in

Plasma micronutrients, trace elements, and breast cancer in BRCA1 mutation carriers: an exploratory study

  • Original paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Purpose

Few studies have evaluated the role of micronutrients or trace elements in breast cancer development among BRCA1 mutation carriers. To investigate a possible role of dietary and environmental exposures on cancer risk, we undertook an exploratory study, using a matched case–control design (n = 48 cases and 96 controls), to evaluate the relationships between plasma levels of 14 micronutrients and breast cancer risk among BRCA1 mutation carriers in Poland.

Methods

We estimated the univariate odds ratios (OR) and 95 % confidence intervals (CI) for breast cancer associated with plasma levels for each of 14 micronutrients.

Results

Of the 14 analytes quantified, significant differences between cases and controls were seen for two (iron and retinol; p = 0.009 and p = 0.03, respectively). Women in the highest tertile of plasma iron had a 57 % lower risk, compared with those in the lowest quartile (OR = 0.43; 95 % CI 0.18–1.04; p for trend = 0.06). Increasing antimony levels were associated with an increased risk of breast cancer (p for trend = 0.05). Women in the highest tertile had a 2.43-fold increase in breast cancer risk compared with women in the lowest tertile (OR = 2.43; 95 % CI 1.00–5.91).

Conclusions

This study provides some preliminary evidence regarding a role of diet, specifically iron and antimony, in the etiology of BRCA1-associated breast cancer. Prospective studies are necessary to confirm these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ford D et al (1998) Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am J Hum Genet 62(3):676–689

    Article  PubMed  CAS  Google Scholar 

  2. Antoniou A et al (2003) Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet 72(5):1117–1130

    Article  PubMed  CAS  Google Scholar 

  3. Narod S et al (1993) Increasing incidence of breast cancer in family with BRCA1 mutation. Lancet 341(8852):1101–1102

    Article  PubMed  CAS  Google Scholar 

  4. Foulkes WD et al (2002) Change in the penetrance of founder BRCA1/2 mutations? A retrospective cohort study. J Med Genet 39(6):407–409

    Article  PubMed  CAS  Google Scholar 

  5. King MC, Marks JH, Mandell JB (2003) Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science 302(5645):643–646

    Article  PubMed  CAS  Google Scholar 

  6. Nkondjock A et al (2006) Coffee consumption and breast cancer risk among BRCA1 and BRCA2 mutation carriers. Int J Cancer 118(1):103–107

    Article  PubMed  CAS  Google Scholar 

  7. Kowalska E et al (2005) Increased rates of chromosome breakage in BRCA1 carriers are normalized by oral selenium supplementation. Cancer Epidemiol Biomarkers Prev 14(5):1302–1306

    Article  PubMed  CAS  Google Scholar 

  8. Kotsopoulos J et al (2010) Toenail selenium status and DNA repair capacity among female BRCA1 mutation carriers. Cancer Causes Control 21(5):679–687

    Article  PubMed  Google Scholar 

  9. Kotsopoulos J et al (2005) Changes in body weight and the risk of breast cancer in BRCA1 and BRCA2 mutation carriers. Breast Cancer Res 7(5):R833–R843

    Article  PubMed  CAS  Google Scholar 

  10. Kotsopoulos J, Narod SA (2005) Towards a dietary prevention of hereditary breast cancer. Cancer Causes Control 16(2):125–138

    Article  PubMed  Google Scholar 

  11. Scott R (2004) DNA double strand break repair and its association with inherited predispositions to breast cancer. Hereditary Cancer in Clinical Practice 2(1):37–43

    Article  PubMed  CAS  Google Scholar 

  12. Narod SA (2006) Modifiers of risk of hereditary breast cancer. Oncogene 25(43):5832–5836

    Article  PubMed  CAS  Google Scholar 

  13. Lubinski J et al. (2012) The risk of breast cancer in women with a BRCA1 mutation from North America and Poland. Int J Cancer 131(1):229–234

    Google Scholar 

  14. Siomek A et al (2007) Higher leukocyte 8-oxo-7,8-dihydro-2′-deoxyguanosine and lower plasma ascorbate in aging humans? Antioxid Redox Signal 9(1):143–150

    Article  PubMed  CAS  Google Scholar 

  15. Kand’ar R, Zakova P (2009) Determination of 25-hydroxyvitamin D3 in human plasma using HPLC with UV detection based on SPE sample preparation. J Sep Sci 32(17):2953–2957

    Article  PubMed  Google Scholar 

  16. Lu W et al (2002) Rapid method for the determination of total 5-methyltetrahydrofolate in blood by liquid chromatography with fluorescence detection. J Chromatogr B Analyt Technol Biomed Life Sci 766(2):331–337

    Article  PubMed  Google Scholar 

  17. Kabat GC, Rohan TE (2007) Does excess iron play a role in breast carcinogenesis? An unresolved hypothesis. Cancer Causes Control 18(10):1047–1053

    Article  Google Scholar 

  18. Reizenstein P (1991) Iron, free radicals and cancer. Med Oncol Tumor Pharmacother 8(4):229–233

    PubMed  CAS  Google Scholar 

  19. McCord JM (2004) Iron, free radicals, and oxidative injury. J Nutr 134(11):3171S–3172S

    PubMed  CAS  Google Scholar 

  20. Stevens RG (2000) Hemochromatosis heterozygotes may constitute a radiation-sensitive subpopulation. Radiat Res 154(6):725–726; discussion 726–727

    Google Scholar 

  21. Adzersen KH et al (2003) Raw and cooked vegetables, fruits, selected micronutrients, and breast cancer risk: a case-control study in Germany. Nutr Cancer 46(2):131–137

    Article  PubMed  CAS  Google Scholar 

  22. Negri E et al (1996) Intake of selected micronutrients and the risk of breast cancer. Int J Cancer 65(2):140–144

    Article  PubMed  CAS  Google Scholar 

  23. Levi F et al (2001) Dietary intake of selected micronutrients and breast-cancer risk. Int J Cancer 91(2):260–263

    Article  PubMed  CAS  Google Scholar 

  24. Kabat GC et al (2010) Intakes of dietary iron and heme-iron and risk of postmenopausal breast cancer in the National Institutes of Health-AARP Diet and Health Study. Am J Clin Nutr 92(6):1478–1483

    Article  PubMed  CAS  Google Scholar 

  25. Kabat GC et al (2007) Dietary iron and heme iron intake and risk of breast cancer: a prospective cohort study. Cancer Epidemiol Biomarkers Prev 16(6):1306–1308

    Article  PubMed  CAS  Google Scholar 

  26. Ferrucci LM et al (2009) Intake of meat, meat mutagens, and iron and the risk of breast cancer in the prostate, lung, colorectal, and ovarian cancer screening trial. Br J Cancer 101(1):178–184

    Article  PubMed  CAS  Google Scholar 

  27. Kallianpur AR et al (2008) Dietary animal-derived iron and fat intake and breast cancer risk in the Shanghai Breast Cancer Study. Breast Cancer Res Treat 107(1):123–132

    Article  PubMed  CAS  Google Scholar 

  28. Ionescu JG et al (2006) Increased levels of transition metals in breast cancer tissue. Neuro Endocrinol Lett 27(Suppl 1):36–39

    PubMed  CAS  Google Scholar 

  29. Cui Y et al (2007) Levels of zinc, selenium, calcium, and iron in benign breast tissue and risk of subsequent breast cancer. Cancer Epidemiol Biomarkers Prev 16(8):1682–1685

    Article  PubMed  CAS  Google Scholar 

  30. Huang YL, Sheu JY, Lin TH (1999) Association between oxidative stress and changes of trace elements in patients with breast cancer. Clin Biochem 32(2):131–136

    Article  PubMed  CAS  Google Scholar 

  31. Knekt P et al (1994) Body iron stores and risk of cancer. Int J Cancer 56(3):379–382

    Article  PubMed  CAS  Google Scholar 

  32. Ulbrich EJ et al. (2003) Serum parameters of iron metabolism in patients with breast cancer. Anticancer Res 23(6D):5107–5109

    Google Scholar 

  33. Bae YJ et al (2009) Dietary intake and serum levels of iron in relation to oxidative stress in breast cancer patients. J Clin Biochem Nutr 45(3):355–360

    Article  PubMed  Google Scholar 

  34. Wu T et al (2004) Serum iron, copper and zinc concentrations and risk of cancer mortality in US adults. Ann Epidemiol 14(3):195–201

    Article  PubMed  Google Scholar 

  35. Pasha Q et al (2010) Comparison of trace elements in the scalp hair of malignant and benign breast lesions versus healthy women. Biol Trace Elem Res 134(2):160–173

    Article  PubMed  CAS  Google Scholar 

  36. Wang T et al (2009) Use of scalp hair as indicator of human exposure to heavy metals in an electronic waste recycling area. Environ Pollut 157(8–9):2445–2451

    Article  PubMed  CAS  Google Scholar 

  37. Pereira R, Ribeiro R, Goncalves F (2004) Scalp hair analysis as a tool in assessing human exposure to heavy metals (S. Domingos mine, Portugal). Sci Total Environ 327(1–3):81–92

    PubMed  CAS  Google Scholar 

  38. Jian J et al (2011) Effects of iron deficiency and iron overload on angiogenesis and oxidative stress-a potential dual role for iron in breast cancer. Free Radic Biol Med 50(7):841–847

    Article  PubMed  CAS  Google Scholar 

  39. Huang X (2008) Does iron have a role in breast cancer? Lancet Oncol 9(8):803–807

    Article  PubMed  CAS  Google Scholar 

  40. Hayes RB (1997) The carcinogenicity of metals in humans. Cancer Causes Control 8(3):371–385

    Article  PubMed  CAS  Google Scholar 

  41. De Boeck M, Kirsch-Volders M, Lison D (2003) Cobalt and antimony: genotoxicity and carcinogenicity. Mutat Res 533(1–2):135–152

    PubMed  Google Scholar 

  42. McCallum RI (2005) Occupational exposure to antimony compounds. J Environ Monit 7(12):1245–1250

    Article  PubMed  CAS  Google Scholar 

  43. Benderli Cihan Y, Sozen S, Ozturk Yildirim S (2011) Trace elements and heavy metals in hair of stage III breast cancer patients. Biol Trace Elem Res 144(1–3):360–379

    Article  PubMed  Google Scholar 

  44. Choe SY et al (2003) Evaluation of estrogenicity of major heavy metals. Sci Total Environ 312(1–3):15–21

    PubMed  CAS  Google Scholar 

  45. Groff JL, Gropper SS (eds) (1999) The fat-soluble vitamins. In Advanced nutrition and human metabolism. Peter Marshall, Belmont, CA, pp 316–331

  46. Fairfield KM, Fletcher RH (2002) Vitamins for chronic disease prevention in adults: scientific review. JAMA 287(23):3116–3126

    Article  PubMed  CAS  Google Scholar 

  47. Altucci L, Gronemeyer H (2001) The promise of retinoids to fight against cancer. Nat Rev Cancer 1(3):181–193

    Article  PubMed  CAS  Google Scholar 

  48. Fulan H et al. (2011) Retinol, vitamins A, C, and E and breast cancer risk: a meta-analysis and meta-regression. Cancer Causes Control 22(10):1383-1396

    Google Scholar 

  49. Tamimi RM et al (2005) Plasma carotenoids, retinol, and tocopherols and risk of breast cancer. Am J Epidemiol 161(2):153–160

    Article  PubMed  Google Scholar 

  50. Epplein M et al (2009) Plasma carotenoids, retinol, and tocopherols and postmenopausal breast cancer risk in the Multiethnic Cohort Study: a nested case-control study. Breast Cancer Res 11(4):R49

    Article  PubMed  Google Scholar 

  51. Welsh J et al (2002) Impact of the Vitamin D3 receptor on growth-regulatory pathways in mammary gland and breast cancer. J Steroid Biochem Mol Biol 83(1–5):85–92

    Article  PubMed  CAS  Google Scholar 

  52. Jensen SS et al (2001) Inhibitory effects of 1alpha,25-dihydroxyvitamin D(3) on the G(1)-S phase-controlling machinery. Mol Endocrinol 15(8):1370–1380

    Article  PubMed  CAS  Google Scholar 

  53. Colston KW, Berger U, Coombes RC (1989) Possible role for vitamin D in controlling breast cancer cell proliferation. Lancet 1(8631):188–191

    Article  PubMed  CAS  Google Scholar 

  54. Colston KW et al (2003) Effects of Seocalcitol (EB1089) on nitrosomethyl urea-induced rat mammary tumors. Breast Cancer Res Treat 80(3):303–311

    Article  PubMed  CAS  Google Scholar 

  55. Nolan E et al (1998) Dissociation of vitamin D3 and anti-estrogen mediated growth regulation in MCF-7 breast cancer cells. Mol Cell Biochem 188(1–2):13–20

    Article  PubMed  CAS  Google Scholar 

  56. VanWeelden K et al (1998) Apoptotic regression of MCF-7 xenografts in nude mice treated with the vitamin D3 analog, EB1089. Endocrinology 139(4):2102–2110

    Article  PubMed  CAS  Google Scholar 

  57. Hollis BW (1996) Assessment of vitamin D nutritional and hormonal status: what to measure and how to do it. Calcif Tissue Int 58(1):4–5

    PubMed  CAS  Google Scholar 

  58. Eliassen AH et al (2011) Plasma 25-hydroxyvitamin D and risk of breast cancer in the Nurses’ Health Study II. Breast Cancer Res 13(3):R50

    Article  PubMed  Google Scholar 

  59. Hiatt RA et al (1998) Prediagnostic serum vitamin D and breast cancer. J Natl Cancer Inst 90(6):461–463

    Article  PubMed  CAS  Google Scholar 

  60. Bertone-Johnson ER et al (2005) Plasma 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D and risk of breast cancer. Cancer Epidemiol Biomarkers Prev 14(8):1991–1997

    Article  PubMed  CAS  Google Scholar 

  61. Dorjgochoo T et al (2009) Plasma carotenoids, tocopherols, retinol and breast cancer risk: results from the Shanghai Women Health Study (SWHS). Breast Cancer Res Treat 117(2):381–389

    Article  PubMed  CAS  Google Scholar 

  62. Dorgan JF et al (1998) Relationships of serum carotenoids, retinol, alpha-tocopherol, and selenium with breast cancer risk: results from a prospective study in Columbia, Missouri (United States). Cancer Causes Control 9(1):89–97

    Article  PubMed  CAS  Google Scholar 

  63. Sato R et al (2002) Prospective study of carotenoids, tocopherols, and retinoid concentrations and the risk of breast cancer. Cancer Epidemiol Biomarkers Prev 11(5):451–457

    PubMed  CAS  Google Scholar 

  64. Navarro Silvera SA, Rohan TE (2007) Trace elements and cancer risk: a review of the epidemiologic evidence. Cancer Causes Control 18(1):7–27

    Article  PubMed  Google Scholar 

  65. Gupta SK et al (1991) Serum trace elements and Cu/Zn ratio in breast cancer patients. J Surg Oncol 46(3):178–181

    Article  PubMed  CAS  Google Scholar 

  66. Huzarski T et al (2006) A lowering of breast and ovarian cancer risk in women with a BRCA1 mutation by selenium supplementation of diet. Hered Cancer Clin Pract 4(1):58

    Article  PubMed  Google Scholar 

  67. Hunter D (1998) Biochemical indicators of dietary intake. In: Willett W (ed) Nutritional epidemiology. Oxford Press, Oxford, p 174

  68. Kim YI (2007) Folate and colorectal cancer: an evidence-based critical review. Mol Nutr Food Res 51(3):267–292

    Article  PubMed  CAS  Google Scholar 

  69. Larsson SC, Giovannucci E, Wolk A (2007) Folate and risk of breast cancer: a meta-analysis. J Natl Cancer Inst 99(1):64–76

    Article  PubMed  CAS  Google Scholar 

  70. Lewis SJ et al (2006) Meta-analyses of observational and genetic association studies of folate intakes or levels and breast cancer risk. J Natl Cancer Inst 98(22):1607–1622

    Article  PubMed  CAS  Google Scholar 

  71. Lin J et al (2008) Plasma folate, vitamin B-6, vitamin B-12, and risk of breast cancer in women. Am J Clin Nutr 87(3):734–743

    PubMed  CAS  Google Scholar 

  72. Stolzenberg-Solomon RZ et al (2006) Folate intake, alcohol use, and postmenopausal breast cancer risk in the prostate, lung, colorectal, and ovarian cancer screening trial. Am J Clin Nutr 83(4):895–904

    PubMed  CAS  Google Scholar 

  73. Stevens VL et al (2010) Folate and other one-carbon metabolism-related nutrients and risk of postmenopausal breast cancer in the cancer prevention study II nutrition cohort. Am J Clin Nutr 91(6):1708–1715

    Article  PubMed  CAS  Google Scholar 

  74. Faulk WP, Hsi BL, Stevens PJ (1980) Transferrin and transferrin receptors in carcinoma of the breast. Lancet 2(8191):390–392

    Article  PubMed  CAS  Google Scholar 

  75. Rossiello R, Carriero MV, Giordano GG (1984) Distribution of ferritin, transferrin and lactoferrin in breast carcinoma tissue. J Clin Pathol 37(1):51–55

    Article  PubMed  CAS  Google Scholar 

  76. Hou MF et al (1998) Serum vitamin A level in breast cancer patients. Kaohsiung J Med Sci 14(11):673–678

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The project was supported by the Polish Entrepreneurs Foundation. Joanne Kotsopoulos is the recipient of a Cancer Care Ontario Research Chair in Population Studies. Steven Narod is the recipient of a Canada Research Chair tier I.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanne Kotsopoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotsopoulos, J., Sukiennicki, G., Muszyńska, M. et al. Plasma micronutrients, trace elements, and breast cancer in BRCA1 mutation carriers: an exploratory study. Cancer Causes Control 23, 1065–1074 (2012). https://doi.org/10.1007/s10552-012-9975-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-012-9975-0

Keywords

Navigation