Skip to main content

Advertisement

Log in

Oxidative stress shapes breast cancer phenotype through chronic activation of ATM-dependent signaling

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Reactive oxygen species (ROS) are thought to be among the initiating insults that drive carcinogenesis; however, beyond the mutagenic properties of ROS, it is unclear how reactive oxygen species and response to redox imbalance may shape cancer phenotype. We have previously observed that basal activity of the powerfully oncogenic transcription factor NF-κB in cultured breast cancer and other tumor cell lines is dependent upon the DNA damage-responsive kinase ATM. Here we show that, in MDA-MB-231 and HeLa cells, basal ATM-dependent NF-κB activation occurs through a canonical DNA damage-responsive signaling pathway as knockdown of two proteins involved in this signaling pathway, ERC1 and TAB1, results in loss of NF-κB basal activity. We further show that knockdown of ATM in MDA-MB-231, a breast cancer line with a pronounced mesenchymal phenotype, results in the reversion of these cells to an epithelial morphology and gene expression pattern. Culture of MDA-MB-231 and HeLa cells on the antioxidant N-acetyl cysteine (NAC) blunted NF-κB transcriptional activity, and long-term culture on low doses of NAC resulted in coordinate reductions in steady-state ROS levels, acquisition of an epithelial morphology, as well as upregulation of epithelial and downregulation of mesenchymal marker gene expression. Moreover, these reversible effects are attributable, at least in part, to downregulation of ATM-dependent NF-κB signaling in MDA-MB-231 cells as RNAi-mediated knockdown of the NF-κB subunit RelA or its upstream activator TG2 produced similar alterations in phenotype. We conclude that chronic activation of ATM in response to persistent ROS insult triggers continual activation of the oncogenic NF-κB transcriptional complex that, in turn, promotes aggressive breast cancer phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adey A, Burton JN, Kitzman JO, Hiatt JB, Lewis AP, Martin BK, Qiu R, Lee C, Shendure J (2013) The haplotype-resolved genome and epigenome of the aneuploid HeLa cancer cell line. Nature 500:207–211

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Ahn JY, Schwarz JK, Piwnica-Worms H, Canman CE (2000) Threonine 68 phosphorylation by ataxia telangiectasia mutated is required for efficient activation of Chk2 in response to ionizing radiation. Cancer Res 60:5934–5936

    CAS  PubMed  Google Scholar 

  3. Ai L, Kim WJ, Demircan B, Dyer LM, Bray KJ, Skehan RR, Massoll NA, Brown KD (2008) The transglutaminase 2 gene (TGM2), a potential molecular marker for chemotherapeutic drug sensitivity, is epigenetically silenced in breast cancer. Carcinogenesis 29:510–518

    Article  CAS  PubMed  Google Scholar 

  4. Ai L, Skehan RR, Saydi J, Lin T, Brown KD (2012) Ataxia-Telangiectasia, Mutated (ATM)/Nuclear Factor kappa light chain enhancer of activated B cells (NFkappaB) signaling controls basal and DNA damage-induced transglutaminase 2 expression. J Biol Chem 287:18330–18341

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Bakkenist CJ, Kastan MB (2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421:499–506

    Article  CAS  PubMed  Google Scholar 

  6. Bambang IF, Xu S, Zhou J, Salto-Tellez M, Sethi SK, Zhang D (2009) Overexpression of endoplasmic reticulum protein 29 regulates mesenchymal-epithelial transition and suppresses xenograft tumor growth of invasive breast cancer cells. Lab Invest 89:1229–1242

    Article  CAS  PubMed  Google Scholar 

  7. Banin S, Moyal L, Shieh S, Taya Y, Anderson CW, Chessa L, Smorodinsky NI, Prives C, Reiss Y, Shiloh Y, Ziv Y (1998) Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281:1674–1677

    Article  CAS  PubMed  Google Scholar 

  8. Barzilai A, Rotman G, Shiloh Y (2002) ATM deficiency and oxidative stress: a new dimension of defective response to DNA damage. DNA Repair (Amst) 1:3–25

    Article  CAS  Google Scholar 

  9. Bhatti S, Kozlov S, Farooqi AA, Naqi A, Lavin M, Khanna KK (2011) ATM protein kinase: the linchpin of cellular defenses to stress. Cell Mol Life Sci 68:2977–3006. doi:10.1007/s00018-011-0683-9

    Article  CAS  PubMed  Google Scholar 

  10. Biswas DK, Shi Q, Baily S, Strickland I, Ghosh S, Pardee AB, Iglehart JD (2004) NF-kappa B activation in human breast cancer specimens and its role in cell proliferation and apoptosis. Proc Natl Acad Sci U S A 101:10137–10142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Biton S, Barzilai A, Shiloh Y (2008) The neurological phenotype of ataxia-telangiectasia: solving a persistent puzzle. DNA Repair (Amst) 7:1028–1038

    Article  CAS  Google Scholar 

  12. Brown KD (2013) Transglutaminase 2 and NF-kappaB: an odd couple that shapes breast cancer phenotype. Breast Cancer Res Treat 137:329–336

    Article  CAS  PubMed  Google Scholar 

  13. Brown NS, Bicknell R (2001) Hypoxia and oxidative stress in breast cancer. Oxidative stress: its effects on the growth, metastatic potential and response to therapy of breast cancer. Breast Cancer Res 3:323–327

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K, Appella E, Kastan MB, Siliciano JD (1998) Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281:1677–1679

    Article  CAS  PubMed  Google Scholar 

  15. Cao Y, Karin M (2003) NF-kappaB in mammary gland development and breast cancer. J Mammary Gland Biol Neoplasia 8:215–223

    Article  PubMed  Google Scholar 

  16. Cheng ZX, Sun B, Wang SJ, Gao Y, Zhang YM, Zhou HX, Jia G, Wang YW, Kong R, Pan SH, Xue DB, Jiang HC, Bai XW (2011) Nuclear factor-kappaB-dependent epithelial to mesenchymal transition induced by HIF-1alpha activation in pancreatic cancer cells under hypoxic conditions. PLoS One 6:e23752

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Cieply B, Pt Riley, Pifer PM, Widmeyer J, Addison JB, Ivanov AV, Denvir J, Frisch SM (2012) Suppression of the epithelial-mesenchymal transition by Grainyhead-like-2. Cancer Res 72:2440–2453

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Cortez D, Wang Y, Qin J, Elledge SJ (1999) Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science 286:1162–1166

    Article  CAS  PubMed  Google Scholar 

  19. Dejardin E, Bonizzi G, Bellahcene A, Castronovo V, Merville MP, Bours V (1995) Highly-expressed p100/p52 (NFKB2) sequesters other NF-kappa B-related proteins in the cytoplasm of human breast cancer cells. Oncogene 11:1835–1841

    CAS  PubMed  Google Scholar 

  20. Ditch S, Paull TT (2012) The ATM protein kinase and cellular redox signaling: beyond the DNA damage response. Trends Biochem Sci 37:15–22

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Feig DI, Sowers LC, Loeb LA (1994) Reverse chemical mutagenesis: identification of the mutagenic lesions resulting from reactive oxygen species-mediated damage to DNA. Proc Natl Acad Sci U S A 91:6609–6613

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Friedberg EC (2003) DNA damage and repair. Nature 421:436–440

    Google Scholar 

  23. Gago-Dominguez M, Jiang X, Castelao JE (2007) Lipid peroxidation, oxidative stress genes and dietary factors in breast cancer protection: a hypothesis. Breast Cancer Res 9:201

    Article  PubMed Central  PubMed  Google Scholar 

  24. Grosjean-Raillard J, Tailler M, Ades L, Perfettini JL, Fabre C, Braun T, De Botton S, Fenaux P, Kroemer G (2009) ATM mediates constitutive NF-kappaB activation in high-risk myelodysplastic syndrome and acute myeloid leukemia. Oncogene 28:1099–1109

    Article  CAS  PubMed  Google Scholar 

  25. Guo Z, Kozlov S, Lavin MF, Person MD, Paull TT (2010) ATM activation by oxidative stress. Science 330:517–521

    Article  CAS  PubMed  Google Scholar 

  26. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  CAS  PubMed  Google Scholar 

  27. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  28. Harris TJ, Tepass U (2010) Adherens junctions: from molecules to morphogenesis. Nat Rev Mol Cell Biol 11:502–514

    Article  CAS  PubMed  Google Scholar 

  29. Hennessy BT, Gonzalez-Angulo AM, Stemke-Hale K, Gilcrease MZ, Krishnamurthy S, Lee JS, Fridlyand J, Sahin A, Agarwal R, Joy C, Liu W, Stivers D, Baggerly K, Carey M, Lluch A, Monteagudo C, He X, Weigman V, Fan C, Palazzo J, Hortobagyi GN, Nolden LK, Wang NJ, Valero V, Gray JW, Perou CM, Mills GB (2009) Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res 69:4116–4124

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Huber MA, Azoitei N, Baumann B, Grunert S, Sommer A, Pehamberger H, Kraut N, Beug H, Wirth T (2004) NF-kappaB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Invest 114:569–581

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Hugo HJ, Pereira L, Suryadinata R, Drabsch Y, Gonda TJ, Gunasinghe NP, Pinto C, Soo ET, van Denderen BJ, Hill P, Ramsay RG, Sarcevic B, Newgreen DF, Thompson EW (2013) Direct repression of MYB by ZEB1 suppresses proliferation and epithelial gene expression during epithelial-to-mesenchymal transition of breast cancer cells. Breast Cancer Res 15:R113

    Article  PubMed Central  PubMed  Google Scholar 

  32. Hulka BS, Liu ET, Lininger RA (1994) Steroid hormones and risk of breast cancer. Cancer 74:1111–1124

    Article  CAS  PubMed  Google Scholar 

  33. Jezierska-Drutel A, Rosenzweig SA, Neumann CA (2013) Role of oxidative stress and the microenvironment in breast cancer development and progression. Adv Cancer Res 119:107–125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Karin M, Cao Y, Greten FR, Li ZW (2002) NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2:301–310

    Article  CAS  PubMed  Google Scholar 

  35. Kim DS, Park SS, Nam BH, Kim IH, Kim SY (2006) Reversal of drug resistance in breast cancer cells by transglutaminase 2 inhibition and nuclear factor-kappaB inactivation. Cancer Res 66:10936–10943

    Article  CAS  PubMed  Google Scholar 

  36. Kim DW, Sovak MA, Zanieski G, Nonet G, Romieu-Mourez R, Lau AW, Hafer LJ, Yaswen P, Stampfer M, Rogers AE, Russo J, Sonenshein GE (2000) Activation of NF-kappaB/Rel occurs early during neoplastic transformation of mammary cells. Carcinogenesis 21:871–879

    Article  PubMed  Google Scholar 

  37. Knowles HJ, Harris AL (2001) Hypoxia and oxidative stress in breast cancer. Hypoxia and tumourigenesis. Breast Cancer Res 3:318–322

    Article  CAS  Google Scholar 

  38. Kumar A, Xu J, Brady S, Gao H, Yu D, Reuben J, Mehta K (2010) Tissue transglutaminase promotes drug resistance and invasion by inducing mesenchymal transition in mammary epithelial cells. PLoS One 5:e13390

    Article  PubMed Central  PubMed  Google Scholar 

  39. Lal-Nag M, Morin PJ (2009) The claudins. Genome Biol 10:235

    Article  PubMed Central  PubMed  Google Scholar 

  40. Lee J, Kim YS, Choi DH, Bang MS, Han TR, Joh TH, Kim SY (2004) Transglutaminase 2 induces nuclear factor-kappaB activation via a novel pathway in BV-2 microglia. J Biol Chem 279:53725–53735

    Article  CAS  PubMed  Google Scholar 

  41. Lee JH, Guo Z, Myler LR, Zheng S, Paull TT (2014) Direct activation of ATM by resveratrol under oxidizing conditions. PLoS One 9:e97969

    Article  PubMed Central  PubMed  Google Scholar 

  42. Lee JH, Paull TT (2005) ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 308:551–554

    Article  CAS  PubMed  Google Scholar 

  43. Lim DS, Kim ST, Xu B, Maser RS, Lin J, Petrini JH, Kastan MB (2000) ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature 404:613–617

    Article  CAS  PubMed  Google Scholar 

  44. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−∆∆C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  45. Lord CJ, Ashworth A (2012) The DNA damage response and cancer therapy. Nature 481:287–294

    Article  CAS  PubMed  Google Scholar 

  46. Maier HJ, Schmidt-Strassburger U, Huber MA, Wiedemann EM, Beug H, Wirth T (2010) NF-kappaB promotes epithelial-mesenchymal transition, migration and invasion of pancreatic carcinoma cells. Cancer Lett 295:214–228

    Article  CAS  PubMed  Google Scholar 

  47. Mann AP, Verma A, Sethi G, Manavathi B, Wang H, Fok JY, Kunnumakkara AB, Kumar R, Aggarwal BB, Mehta K (2006) Overexpression of tissue transglutaminase leads to constitutive activation of nuclear factor-κB in cancer cells: delineation of a Novel pathway. Cancer Res 66:8788–8795

    Article  CAS  PubMed  Google Scholar 

  48. Marnett LJ, Plastaras JP (2001) Endogenous DNA damage and mutation. Trends Genet 17:214–221

    Article  CAS  PubMed  Google Scholar 

  49. Matsuoka S, Huang M, Elledge SJ (1998) Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 282:1893–1897

    Article  CAS  PubMed  Google Scholar 

  50. McKinnon PJ (2012) ATM and the molecular pathogenesis of ataxia telangiectasia. Annu Rev Pathol 7:303–321

    Article  CAS  PubMed  Google Scholar 

  51. Menon SG, Coleman MC, Walsh SA, Spitz DR, Goswami PC (2005) Differential susceptibility of nonmalignant human breast epithelial cells and breast cancer cells to thiol antioxidant-induced G(1)-delay. Antioxid Redox Signal 7:711–718

    Article  CAS  PubMed  Google Scholar 

  52. Nakshatri H, Bhat-Nakshatri P, Martin DA, Goulet RJ Jr, Sledge GW Jr (1997) Constitutive activation of NF-κB during progression of breast cancer to hormone-independent growth. Mol Cell Biol 17:3629–3639

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Niu J, Shi Y, Iwai K, Wu ZH (2011) LUBAC regulates NF-κB activation upon genotoxic stress by promoting linear ubiquitination of NEMO. EMBO J 30:3741–3753

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Ohnishi H, Nakahara T, Furuse K, Sasaki H, Tsukita S, Furuse M (2004) JACOP, a novel plaque protein localizing at the apical junctional complex with sequence similarity to cingulin. J Biol Chem 279:46014–46022

    Article  CAS  PubMed  Google Scholar 

  55. Pahl HL (1999) Activators and target genes of Rel/NF-κB transcription factors. Oncogene 18:6853–6866

    Article  CAS  PubMed  Google Scholar 

  56. Portakal O, Ozkaya O, Erden Inal M, Bozan B, Kosan M, Sayek I (2000) Coenzyme Q10 concentrations and antioxidant status in tissues of breast cancer patients. Clin Biochem 33:279–284

    Article  CAS  PubMed  Google Scholar 

  57. Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, He X, Perou CM (2010) Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 12:R68

    Article  PubMed Central  PubMed  Google Scholar 

  58. Tanaka T, Halicka HD, Huang X, Traganos F, Darzynkiewicz Z (2006) Constitutive histone H2AX phosphorylation and ATM activation, the reporters of DNA damage by endogenous oxidants. Cell Cycle 5:1940–1945

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Tanaka T, Kurose A, Halicka HD, Traganos F, Darzynkiewicz Z (2006) 2-deoxy-d-glucose reduces the level of constitutive activation of ATM and phosphorylation of histone H2AX. Cell Cycle 5:878–882

    Article  CAS  PubMed  Google Scholar 

  60. Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2:442–454

    Article  CAS  PubMed  Google Scholar 

  61. Toyokuni S, Okamoto K, Yodoi J, Hiai H (1995) Persistent oxidative stress in cancer. FEBS Lett 358:1–3

    Article  CAS  PubMed  Google Scholar 

  62. Uziel T, Lerenthal Y, Moyal L, Andegeko Y, Mittelman L, Shiloh Y (2003) Requirement of the MRN complex for ATM activation by DNA damage. EMBO J 22:5612–5621

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Watters DJ (2003) Oxidative stress in ataxia telangiectasia. Redox Rep 8:23–29

    Article  CAS  PubMed  Google Scholar 

  64. Wu ZH, Shi Y, Tibbetts RS, Miyamoto S (2006) Molecular linkage between the kinase ATM and NF-kappaB signaling in response to genotoxic stimuli. Science 311:1141–1146

    Article  CAS  PubMed  Google Scholar 

  65. Wu ZH, Wong ET, Shi Y, Niu J, Chen Z, Miyamoto S, Tergaonkar V (2010) ATM- and NEMO-dependent ELKS ubiquitination coordinates TAK1-mediated IKK activation in response to genotoxic stress. Mol Cell 40:75–86

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Zhou Y, Eppenberger-Castori S, Marx C, Yau C, Scott GK, Eppenberger U, Benz CC (2005) Activation of nuclear factor-kappaB (NFkappaB) identifies a high-risk subset of hormone-dependent breast cancers. Int J Biochem Cell Biol 37:1130–1144

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Michael Byrne for help with ROS measurements and Dr. Brian Law for helpful comments during the execution of this work. This work was supported by funding from the NIH (R03 CA125824), and the Florida Department of Health (to KDB).

Conflict of interest

The authors disclose no potential conflicts of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin D. Brown.

Additional information

Merve Alpay and Lindsey R.F. Backman have contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 6267 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alpay, M., Backman, L.R.F., Cheng, X. et al. Oxidative stress shapes breast cancer phenotype through chronic activation of ATM-dependent signaling. Breast Cancer Res Treat 151, 75–87 (2015). https://doi.org/10.1007/s10549-015-3368-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-015-3368-5

Keywords

Navigation