Skip to main content

Advertisement

Log in

Real-time elastography for the differentiation of benign and malignant breast lesions: a meta-analysis

  • Review
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

The prognostic significance of ultrasound real-time elastography (RTE) in patients with breast lesions is controversial. There are two different diagnostic methods: the elasticity score (ES) and the strain ratio (SR). A meta-analysis was performed using a random-effect model to assess the overall sensitivity and specificity of RTE in the differentiation of breast lesions. MEDLINE, EMBASE, PubMed, and the Cochrane Library before February 2011 were searched. A total of 22 studies, which included 4,713 breast nodules in 4,266 patients were analyzed. The overall mean sensitivity and specificity for the diagnosis of malignant breast lesions by RTE were 0.834 [95% confidence interval (CI) 0.814–0.853] and 0.842 (95% CI, 0.829–0.854) for ES, and 0.883 (95% CI, 0.844–0.916) and 0.814 (95% CI, 0.786–0.839) for SR, respectively. RTE has a high sensitivity and specificity in the evaluation of breast lesions and can potentially reduce unnecessary breast biopsies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rahbar G, Sie AC, Hansen GC, Prince JS, Melany ML, Reynolds HE et al (1999) Benign versus malignant solid breast masses: US differentiation. Radiology 213(3):889–894

    PubMed  CAS  Google Scholar 

  2. Stavros AT, Thickman D, Rapp CL, Dennis MA, Parker SH, Sisney GA (1995) Solid breast nodules: use of sonography to distinguish between benign and malignant lesions. Radiology 196:123–134

    PubMed  CAS  Google Scholar 

  3. Jackson VP (1995) The current role of ultrasonography in breast imaging. Radiol Clin North Am 33(6):1161–1170

    PubMed  CAS  Google Scholar 

  4. Duncan JL III, Cederbom GJ, Champaign JL, Smetherman DH, King TA, Farr GH et al (2000) Benign diagnosis by image-guided core-needle breast biopsy. Am Surg 66(1):5–10

    PubMed  Google Scholar 

  5. Chiou SY, Chou YH, Chiou HJM, Wang HK, Tiu CM, Tseng LM et al (2006) Sonographic features of nonpalpable breast cancer: a study based on ultrasound-guided wire-localized surgical biopsies. Ultrasound Med Biol 32(9):1299–1306

    Article  PubMed  Google Scholar 

  6. Berlin JA (1997) Does blinding of readers affect the results of meta-analyses? University of Pennsylvania Meta-analysis Blinding Study Group. Lancet 350(9072):185–186

    Article  PubMed  CAS  Google Scholar 

  7. Dinnes J, Deeks J, Kirby J, Roderick P (2005) A methodological review of how heterogeneity has been examined in systematic reviews of diagnostic test accuracy. Health Technol Assess 9(12):1–113

    CAS  Google Scholar 

  8. Moses LE, Shapiro D, Littenberg B (1993) Combining independent studies of a diagnostic test into a summary ROC curve: data analytic approaches and some additional considerations. Stat Med 12(14):1293–1316

    Article  PubMed  CAS  Google Scholar 

  9. Altman DG, Bland JM (2003) Interaction revisited: the difference between two estimates. BMJ 326(7382):219

    Article  PubMed  Google Scholar 

  10. Zamora J, Abraira V, Muriel A, Khan K, Coomarasamy A (2006) Meta-DiSc: a software for meta-analysis of test accuracy data. BMC Med Res Methodol 6:31

    Article  PubMed  Google Scholar 

  11. Moon WK, Huang CS, Shen WC, Takada E, Chang RF, Joe J et al (2009) Analysis of elastographic and B-mode features at sonoelastography for breast tumor classification. Ultrasound Med Biol 35(11):1794–1802

    Article  PubMed  Google Scholar 

  12. Leong LC, Sim LS, Lee YS, Ng FC, Wan CM, Fook-Chong SM et al (2010) A prospective study to compare the diagnostic performance of breast elastography versus conventional breast ultrasound. Clin Radiol 65(11):887–894

    Article  PubMed  CAS  Google Scholar 

  13. Barr RG (2010) Real-time ultrasound elasticity of the breast: initial clinical results. Ultrasound Q 26(2):61–66

    Article  PubMed  Google Scholar 

  14. Itoh A, Ueno E, Tohno E, Kamma H, Takahashi H, Shiina T et al (2006) Breast disease: clinical application of US elastography for diagnosis. Radiology 239(2):341–350

    Article  PubMed  Google Scholar 

  15. Thomas A, Kummel S, Fritzche F, Warm M, Ebert B, Hammet B et al (2006) Real-time sonoelastography performed in addition to B-mode ultrasound and mammography: improved differentiation of breast lesions? Acad Radiol 13(12):1496–1504

    Article  PubMed  Google Scholar 

  16. Thomas A, Fischer T, Frey H, Ohlinger R, Grunwald S, Blohmer JU et al (2006) Real-time elastography: an advanced method of ultrasound—first results in 108 patients with breast lesions. Ultrasound Obstet Gynecol 28(3):335–340

    Article  PubMed  CAS  Google Scholar 

  17. Zhi H, Ou B, Luo BM, Feng X, Wen YL, Yang HY (2007) Comparison of ultrasound elastography, mammography, and sonography in the diagnosis of solid breast lesions. J Ultrasound Med 26(6):807–815

    PubMed  Google Scholar 

  18. Cho N, Moon WK, Park JS, Cha JH, Jang M, Seong MH (2008) Nonpalpable breast masses: evaluation by US elastography. Korean J Radiol 9(2):111–118

    Article  PubMed  Google Scholar 

  19. Tan SM, Teh HS, Mancer JF, Poh WT (2008) Improving B mode ultrasound of breast lesions with real-time ultrasound elastography: a clinical approach. Breast 17:252–257

    Article  PubMed  CAS  Google Scholar 

  20. Zhu QL, Jiang YX, Liu JB, Liu H, Sun Q, Dai Q et al (2008) Real-time ultrasound elastography: its potential role in assessment of breast lesions. Ultrasound Med Biol 34(8):1232–1238

    Article  PubMed  Google Scholar 

  21. Scaperrotta G, Ferranti C, Costa C, Mariani L, Marchesini M, Suman L et al (2008) Role of sonoelastography in non-palpable breast lesions. Eur Radiol 18(11):2381–2389

    Article  PubMed  Google Scholar 

  22. Sohn YM, Kim MJ, Kim EK et al (2009) Sonographic elastography combined with conventional sonography: how much is it helpful for diagnostic performance? J Ultrasound Med 28:413–420

    PubMed  Google Scholar 

  23. Fleury Ede F, Fleury JC, Piato S, Roveda D (2009) New elastographic classification of breast lesions during and after compression. Diagn Interv Radiol 15(2):96–103

    PubMed  Google Scholar 

  24. Cho N, Moon WK, Park JS (2009) Real-time US elastography in the differentiation of suspicious microcalcifications on mammography. Eur Radiol 19(7):1621–1628

    Article  PubMed  Google Scholar 

  25. Schaefer FK, Heer I, Schaefer PJ et al (2011) Breast ultrasound elastography—results of 193 breast lesions in a prospective study with histopathologic correlation. Eur J Radiol 77:450–456

    Article  PubMed  CAS  Google Scholar 

  26. Cho N, Moon WK, Kim HY, Chang MJ, Park SH, Lyou CY (2010) Sonoelastographic strain index for differentiation of benign and malignant nonpalpable breast masses. J Ultrasound Med 29:1–7

    PubMed  Google Scholar 

  27. Chung SY, Moon WK, Choi JW, Cho N, Jang MJ, Kim KG (2010) Differentiation of benign from malignant nonpalpable breast masses: a comparison of computer-assisted quantification and visual assessment of lesion stiffness with the use of sonographic elastography. Acta Radiol 51(1):9–14

    Article  PubMed  Google Scholar 

  28. Raza S, Odulate A, Ong EM, Chikarmane S, Harston CW (2010) Using real-time tissue elastography for breast lesion evaluation: our initial experience. J Ultrasound Med 29:551–563

    PubMed  Google Scholar 

  29. Thomas A, Degenhardt F, Farrokh A, Wojcinski S, Slowinski T, Fischer T et al (2010) Significant differentiation of focal breast lesions: calculation of strain ratio in breast sonoelastography. Acad Radiol 17(5):558–563

    Article  PubMed  Google Scholar 

  30. Regini E, Bagnera S, Tota D, Campanino P, Luparia A, Barisone F et al (2010) Role of sonoelastography in characterising breast nodules Preliminary experience with 120 lesions. Radiol Med 115(4):551–562

    Article  PubMed  CAS  Google Scholar 

  31. Zhi H, Xiao XY, Yang HY, Ou B, Wen YL, Luo BM (2010) Ultrasonic elastography in breast cancer diagnosis: strain ratio vs. 5-point scale. Acad Radiol 17(10):1227–1233

    Article  PubMed  Google Scholar 

  32. Parajuly SS, Lan PY, Yan L, Gang YZ, Lin L (2010) Breast elastography: a hospital-based preliminary study in China. Asian Pac J Cancer Prev 11(3):809–814

    PubMed  Google Scholar 

  33. Moon WK, Choi JW, Cho N, Park SH, Chang JM, Jang M et al (2010) Computer-aided analysis of ultrasound elasticity images for classification of benign and malignant breast masses. AJR Am J Roentgenol 195(6):1460–1465

    Article  PubMed  Google Scholar 

  34. Lee JH, Kim SH, Kang BJ, Choi JJ, Jeong SH, Yim HW et al (2011) Role and clinical usefulness of elastography in small breast masses. Acad Radiol 18(1):74–80

    Article  PubMed  Google Scholar 

  35. Satake H, Nishio A, Ikeda M, Ishigaki S, Shimamoto K, Hirano M et al (2011) Predictive value for malignancy of suspicious breast masses of BI-RADS categories 4 and 5 using ultrasound elastography and MR diffusion-weighted imaging. AJR Am J Roentgenol 196(1):202–209

    Article  PubMed  Google Scholar 

  36. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109):629–634

    PubMed  CAS  Google Scholar 

  37. Pham B, Platt R, McAuley L, Klassen TP, Moher D (2001) Is there a “best” way to detect and minimize publication bias? An empirical evaluation. Eval Health Prof 24(2):109–125

    PubMed  CAS  Google Scholar 

  38. Tang S, Huang G, Liu J, Liu T, Treven L, Song S et al (2011) Usefulness of (18)F-FDGPET, combined FDG-PET/CT and EUS in diagnosing primary pancreatic carcinoma: a meta-analysis. Eur J Radiol 78:142–150

    Article  PubMed  Google Scholar 

  39. Burnside ES, Hall TJ, Sommer AM, Hesley GK, Sisney GA, Svensson WE et al (2007) Differentiating benign from malignant solid breast masses with US strain imaging. Radiology 245(2):401–410

    Article  PubMed  Google Scholar 

  40. Regner DM, Hesley GK, Hangiandreou NJ, Morton MJ, Nordland MR, Meixner DD et al (2006) Breast lesions: evaluation with US strain imaging—clinical experience of multiple observers. Radiology 238(2):425–437

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by grants from the Foundation of National Natural Science Foundation of China (No. 30770599); the Natural Science Foundation of Shanghai Jiaotong University of Medicine (No. 2008XJ024), Shanghai Key Technologies R&D Program of China (No. 09441900500). Thanks to the great help of Xinhua Qu and Xiaolu Huang.

Conflict of interest

The authors have declared that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping Xiong or Weili Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, X., Xu, Q., Xu, Z. et al. Real-time elastography for the differentiation of benign and malignant breast lesions: a meta-analysis. Breast Cancer Res Treat 130, 11–18 (2011). https://doi.org/10.1007/s10549-011-1745-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-011-1745-2

Keywords

Navigation