Skip to main content

Advertisement

Log in

Inhibition of estrogen signaling activates the NRF2 pathway in breast cancer

  • Brief Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Exposure to higher levels of estrogen produces genotoxic metabolites that can stimulate mammary tumorigenesis. Induction of NF-E2-related factor 2 (NRF2)-dependent detoxifying enzymes (e.g., NAD(P)H-quinone oxidoreductase 1 (NQO1)) is considered an important mechanism of protection against estrogen-associated carcinogenesis because they would facilitate removal of toxic estrogens. Here, we studied the impact of estrogen-receptor (ER) signaling on NRF2-dependent gene transcription. In luciferase assay experiments using the 5-flanking region of the human NQO1 gene promoter, we observe that ERα ligand-binding domain (LBD) is required for estrogen inhibition of NQO1 promoter activity in estrogen-dependent breast cancer cells. Chromatin immunoprecipitation (ChIP) assay shows that estrogen recruits ERα and a class III histone deacetylase SIRT1 at the NQO1 promoter, leading to inhibition of NQO1 transcription. Inhibition of ERα expression by the antiestrogen shikonin reverses the inhibitory effect of estrogen on NQO1 expression. As a consequence, a chemoprevention study was undertaken to monitor the impact of shikonin on DNA lesions and tumor growth. Treatment of MCF-7 breast cancer cells with shikonin inhibits estrogen-induced 8-hydroxy-2-deoxyguanosine (8-OHdG), a marker of DNA damage. NQO1 deficiency promotes estrogen-dependent tumor formation, and shikonin inhibits estrogen-dependent tumor growth in an NQO1-dependent manner in MCF-7 xenografts. These results suggest that estrogen-receptor signaling pathway has an inhibitory effect on NRF2-dependent enzymes. Moreover, shikonin reverses the inhibitory effects of estrogen on this pathway and may contribute to breast cancer prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Yager JD, Davidson NE (2006) Estrogen carcinogenesis in breast cancer. N Engl J Med 354:270–282

    Article  CAS  PubMed  Google Scholar 

  2. Cavalieri EL, Stack DE, Devanesan PD, Todorovic R, Dwivedy I, Higginbotham S, Johansson SL, Patil KD, Gross ML, Gooden JK, Ramanathan R, Cerny RL, Rogan EG (1997) Molecular origin of cancer: catechol estrogen-3,4-quinones as endogenous tumor initiators. Proc Natl Acad Sci USA 94:10937–10942

    Article  CAS  PubMed  Google Scholar 

  3. Yue W, Santen RJ, Wang JP, Li Y, Verderame MF, Bocchinfuso WP, Korach KS, Devanesan P, Todorovic R, Rogan EG, Cavalieri EL (2003) Genotoxic metabolites of estradiol in breast: potential mechanism of estradiol induced carcinogenesis. J Steroid Biochem Mol Biol 86:477–486

    Article  CAS  PubMed  Google Scholar 

  4. Wang Z, Wijewickrama GT, Peng KW, Dietz BM, Yuan L, van Breemen RB, Bolton JL, Thatcher GR (2009) Estrogen receptor alpha enhances the rate of oxidative DNA damage by targeting an equine estrogen catechol metabolite to the nucleus. J Biol Chem 284:8633–8642

    Article  CAS  PubMed  Google Scholar 

  5. Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47:89–116

    Article  CAS  PubMed  Google Scholar 

  6. Kensler TW, Wakabayashi N (2010) Nrf2: friend or foe for chemoprevention? Carcinogenesis 31:90–99

    Article  CAS  PubMed  Google Scholar 

  7. Kwak MK, Kensler TW (2010) Targeting NRF2 signaling for cancer chemoprevention. Toxicol Appl Pharmacol 244:66–76

    Article  CAS  PubMed  Google Scholar 

  8. Montano MM, Chaplin LJ, Deng H, Mesia-Vela S, Gaikwad N, Zahid M, Rogan E (2007) Protective roles of quinone reductase and tamoxifen against estrogen-induced mammary. Oncogene 26:3587–3590

    Article  CAS  PubMed  Google Scholar 

  9. Sripathy SP, Chaplin LJ, Gaikwad NW, Rogan EG, Montano MM (2008) hPMC2 is required for recruiting an ERbeta coactivator complex to mediate transcriptional upregulation of NQO1 and protection against oxidative DNA damage by tamoxifen. Oncogene 27:6376–6384

    Article  CAS  PubMed  Google Scholar 

  10. Ansell PJ, Espinosa-Nicholas C, Curran EM, Judy BM, Philips BJ, Hannink M, Lubahn DB (2004) In vitro and in vivo regulation of antioxidant response element-dependent gene expression by estrogens. Endocrinology 145:311–317

    Article  CAS  PubMed  Google Scholar 

  11. Ansell PJ, Lo SC, Newton LG, Espinosa-Nicholas C, Zhang DD, Liu JH, Hannink M, Lubahn DB (2005) Repression of cancer protective genes by 17beta-estradiol: ligand-dependent interaction between human Nrf2 and estrogen receptor alpha. Mol Cell Endocrinol 243:27–34

    Article  CAS  PubMed  Google Scholar 

  12. Montano MM, Jaiswal AK, Katzenellenbogen BS (1998) Transcriptional regulation of the human quinone reductase gene by antiestrogen-liganded estrogen receptor-alpha and estrogen receptor-beta. J Biol Chem 273:25443–25449

    Article  CAS  PubMed  Google Scholar 

  13. Yao Y, Zhou Q (2010) A novel antiestrogen agent Shikonin inhibits estrogen-dependent gene transcription in human breast cancer cells. Breast Cancer Res Treat 121:233–240

    Article  CAS  PubMed  Google Scholar 

  14. Singh A, Misra V, Thimmulappa RK, Lee H, Ames S, Hoque MO, Herman JG, Baylin SB, Sidransky D, Gabrielson E, Brock MV, Biswal S (2006) Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer. PLoS Med 3:e420

    Article  PubMed  Google Scholar 

  15. Keen JC, Zhou Q, Park BH, Pettit C, Mack KM, Blair B, Brenner K, Davidson NE (2005) Protein phosphatase 2A (PP2A) regulates estrogen receptor alpha (ER) expression through modulation of ER mRNA stability. J Biol Chem 280:29519–29524

    Article  CAS  PubMed  Google Scholar 

  16. Kim MY, Woo EM, Chong YT, Homenko DR, Kraus WL (2006) Acetylation of estrogen receptor alpha by p300 at lysines 266 and 268 enhances the deoxyribonucleic acid binding and transactivation activities of the receptor. Mol Endocrinol 20:1479–1493

    Article  CAS  PubMed  Google Scholar 

  17. Kressler D, Hock MB, Kralli A (2007) Coactivators PGC-1beta and SRC-1 interact functionally to promote the agonist activity of the selective estrogen receptor modulator tamoxifen. J Biol Chem 282:26897–26907

    Article  CAS  PubMed  Google Scholar 

  18. Yao Y, Li H, Gu Y, Davidson NE, Zhou Q (2010) Inhibition of SIRT1 deacetylase suppresses estrogen receptor signaling. Carcinogenesis 31:382–387

    Article  CAS  PubMed  Google Scholar 

  19. De Iuliis GN, Thomson LK, Mitchell LA, Finnie JM, Koppers AJ, Hedges A, Nixon B, Aitken RJ (2009) DNA damage in human spermatozoa is highly correlated with the efficiency of chromatin remodeling and the formation of 8-hydroxy-2′-deoxyguanosine, a marker of oxidative stress. Biol Reprod 81:517–524

    Article  PubMed  Google Scholar 

  20. Long BJ, Jelovac D, Handratta V, Thiantanawat A, MacPherson N, Ragaz J, Goloubeva OG, Brodie AM (2004) Therapeutic strategies using the aromatase inhibitor letrozole and tamoxifen in a breast cancer model. J Natl Cancer Inst 96:456–465

    Article  CAS  PubMed  Google Scholar 

  21. Gottardis MM, Robinson SP, Jordan VC (1998) Estradiol-stimulated growth of MCF-7 tumors implanted in athymic mice: a model to study the tumoristatic action of tamoxifen. J Steroid Biochem 30:311–314

    Article  Google Scholar 

  22. Brodie A, Jelovac D, Macedo L, Sabnis G, Tilghman S, Goloubeva O (2005) Therapeutic observations in MCF-7 aromatase xenografts. Clin Cancer Res 11:884s–888s

    CAS  PubMed  Google Scholar 

  23. Asher G, Lotem J, Sachs L, Kahana C, Shaul Y (2002) Mdm-2 and ubiquitin-independent p53 proteasomal degradation regulated by NQO1. Proc Natl Acad Sci USA 99:13125–13130

    Article  CAS  PubMed  Google Scholar 

  24. Tsvetkov P, Asher G, Reiss V, Shaul Y, Sachs L, Lotem J (2005) Inhibition of NAD(P)H:quinone oxidoreductase 1 activity and induction of p53 degradation by the natural phenolic compound curcumin. Proc Natl Acad Sci USA 102:5535–5540

    Article  CAS  PubMed  Google Scholar 

  25. Bianco NR, Perry G, Smith MA, Templeton DJ, Montano MM (2003) Functional implications of antiestrogen induction of quinone reductase: inhibition of estrogen-induced deoxyribonucleic acid damage. Mol Endocrinol 17:1344–1355

    Article  CAS  PubMed  Google Scholar 

  26. Yang H, Zhou P, Huang H, Chen D, Ma N, Cui QC, Shen S, Dong W, Zhang X, Lian W, Wang X, Dou QP, Liu J (2009) Shikonin exerts antitumor activity via proteasome inhibition and cell death induction in vitro and in vivo. Int J Cancer 124:2450–2459

    Article  CAS  PubMed  Google Scholar 

  27. Fagerholm R, Hofstetter B, Tommiska J, Aaltonen K, Vrtel R, Syrjäkoski K, Kallioniemi A, Kilpivaara O, Mannermaa A, Kosma VM, Uusitupa M, Eskelinen M, Kataja V, Aittomäki K, von Smitten K, Heikkilä P, Lukas J, Holli K, Bartkova J, Blomqvist C, Bartek J, Nevanlinna H (2008) NAD(P)H:quinone oxidoreductase 1 NQO1*2 genotype (P187S) is a strong prognostic and predictive factor in breast cancer. Nat Genet 40:844–853

    Article  CAS  PubMed  Google Scholar 

  28. Liehr JG (2000) Is estradiol a genotoxic mutagenic carcinogen? Endocr Rev 21:40–54

    Article  CAS  PubMed  Google Scholar 

  29. Fisher B, Costantino JP, Wickerham DL, Redmond CK, Kavanah M, Cronin WM, Vogel V, Robidoux A, Dimitrov N, Atkins J, Daly M, Wieand S, Tan-Chiu E, Ford L, Wolmark N (1998) Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J Natl Cancer Inst 90:1371–1388

    Article  CAS  PubMed  Google Scholar 

  30. Takimoto GS, Graham JD, Jackson TA, Tung L, Powell RL, Horwitz LD, Horwitz KB (1999) Tamoxifen resistant breast cancer: coregulators determine the direction of transcription by antagonist-occupied steroid receptors. J Steroid Biochem Mol Biol 69:45–50

    Article  CAS  PubMed  Google Scholar 

  31. Bown D (1995) Encyclopaedia of herbs and their uses. Dorling Kindersley, London

    Google Scholar 

  32. Chen X, Yang L, Oppenheim JJ, Howard MZ (2002) Cellular pharmacology studies of shikonin derivatives. Phytother Res 16:199–209

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Flight Attendants Medical Research Institute (FAMRI YCSA072084 to QZ) and NIH P50 CA088843 (NED and TWK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qun Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, Y., Brodie, A.M.H., Davidson, N.E. et al. Inhibition of estrogen signaling activates the NRF2 pathway in breast cancer. Breast Cancer Res Treat 124, 585–591 (2010). https://doi.org/10.1007/s10549-010-1023-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-1023-8

Keywords

Navigation