Skip to main content

Advertisement

Log in

Promoter hypermethylation in sentinel lymph nodes as a marker for breast cancer recurrence

  • Clinical Trial
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose Promoter methylation of tumor suppressor genes in histologically negative sentinel lymph nodes (HNSN) of early stage breast cancer patients has not been extensively studied. This study evaluates the methylation frequency and pattern in HNSN to determine if detection of hypermethylation of one or more genes is associated with an increased recurrence risk in node negative breast cancer. Experimental design In 1998, a prospective study of patients with early stage breast cancer and HNSN was initiated in order to correlate sentinel node analysis with clinical outcome. Nodal tissue was selected from 120 HNSN patients for methylation analysis in at least one and up to six sentinel nodes using a panel of nine genes. Corresponding primary breast tumors from 79 patients were also evaluated for hypermethylation. Methylation analysis was performed using nested Methylation Sensitive PCR (n-MSP). Logistical regression was used to evaluate the relationship between clinical recurrence and methylation status. Results Over a median follow-up of 79 months, 13 of the 120 patients had clinical recurrence. Hypermethylation of genes was frequently observed in HNSN, but there was no correlation of methylation pattern and clinical recurrence. However, increased frequency of gene methylation of the primary tumor correlated with clinical recurrence. Conclusions Although hypermethylation of multiple genes occurs frequently in HNSN of breast cancer patients, it is not associated with breast cancer recurrence in the first 7 years of clinical follow-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ (2007) Cancer statistics, 2007. CA Cancer J Clin 57(1):43–66

    Article  PubMed  Google Scholar 

  2. Shinozaki M, Hoon DS, Giuliano AE, Hansen NM, Wang HJ, Turner R, Taback B (2005) Distinct hypermethylation profile of primary breast cancer is associated with sentinel lymph node metastasis. Clin Cancer Res 11(6):2156–2162

    Article  PubMed  CAS  Google Scholar 

  3. Cady B, Stone MD, Schuler JG, Thakur R, Wanner MA, Lavin PT (1996) The new era in breast cancer. Invasion, size, and nodal involvement dramatically decreasing as a result of mammographic screening. Arch Surg 131(3):301–308

    PubMed  CAS  Google Scholar 

  4. Veronesi U, Paganelli G, Viale G, Luini A, Zurrida S, Galimberti V, Intra M, Veronesi P, Robertson C, Maisonneuve P et al (2003) A randomized comparison of sentinel-node biopsy with routine axillary dissection in breast cancer. N Engl J Med 349(6):546–553

    Article  PubMed  Google Scholar 

  5. Jatoi I, Hilsenbeck SG, Clark GM, Osborne CK (1999) Significance of axillary lymph node metastasis in primary breast cancer. J Clin Oncol 17(8):2334–2340

    PubMed  CAS  Google Scholar 

  6. Carter CL, Allen C, Henson DE (1989) Relation of tumor size, lymph node status, and survival in 24,740 breast cancer cases. Cancer 63(1):181–187

    Article  PubMed  CAS  Google Scholar 

  7. Gnerlich J, Jeffe DB, Deshpande AD, Beers C, Zander C, Margenthaler JA (2007) Surgical removal of the primary tumor increases overall survival in patients with metastatic breast cancer: analysis of the 1988–2003 SEER data. Ann Surg Oncol 14(8):2187–2194

    Google Scholar 

  8. Fisher ER, Anderson S, Redmond C, Fisher B (1993) Pathologic findings from the national surgical adjuvant breast project protocol B-06. 10-year pathologic and clinical prognostic discriminants. Cancer 71(8):2507–2514

    Article  PubMed  CAS  Google Scholar 

  9. Sotiriou C, Neo SY, McShane LM, Korn EL, Long PM, Jazaeri A, Martiat P, Fox SB, Harris AL, Liu ET (2003) Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci USA 100(18):10393–10398

    Article  PubMed  CAS  Google Scholar 

  10. van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871):530–536

    Article  CAS  Google Scholar 

  11. van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347(25):1999–2009

    Article  PubMed  Google Scholar 

  12. Paik S, Tang G, Shak S, Kim C, Baker J, Kim W, Cronin M, Baehner FL, Watson D, Bryant J et al (2006) Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol 24(23):3726–3734

    Article  PubMed  CAS  Google Scholar 

  13. Veronesi U, Galimberti V, Zurrida S, Pigatto F, Veronesi P, Robertson C et al (2001) Sentinel lymph node biopsy as an indicator for axillary dissection in early breast cancer. Eur J Cancer 37(4):454–458

    Article  PubMed  CAS  Google Scholar 

  14. McMasters KM, Tuttle TM, Carlson DJ, Brown CM, Noyes RD, Glaser RL, Vennekotter DJ, Turk PS, Tate PS, Sardi A et al (2000) Sentinel lymph node biopsy for breast cancer: a suitable alternative to routine axillary dissection in multi-institutional practice when optimal technique is used. J Clin Oncol 18(13):2560–2566

    PubMed  CAS  Google Scholar 

  15. Krag D, Weaver D, Ashikaga T, Moffat F, Klimberg VS, Shriver C, Feldman S, Kusminsky R, Gadd M, Kuhn J et al (1998) The sentinel node in breast cancer—a multicenter validation study. N Engl J Med 339(14):941–946

    Article  PubMed  CAS  Google Scholar 

  16. Groen RS, Oosterhuis AW, Boers JE (2007) Pathologic examination of sentinel lymph nodes in breast cancer by a single haematoxylin-eosin slide versus serial sectioning and immunocytokeratin staining: clinical implications. Breast Cancer Res Treat 100:229–235

    Google Scholar 

  17. Pargaonkar AS, Beissner RS, Snyder S, Speights VO Jr (2003) Evaluation of immunohistochemistry and multiple-level sectioning in sentinel lymph nodes from patients with breast cancer. Arch Pathol Lab Med 127(6):701–705

    PubMed  Google Scholar 

  18. Rosen PR, Groshen S, Saigo PE, Kinne DW, Hellman S (1989) A long-term follow-up study of survival in stage I (T1N0M0) and stage II (T1N1M0) breast carcinoma. J Clin Oncol 7(3):355–366

    PubMed  CAS  Google Scholar 

  19. Herbert GS, Sohn VY, Brown TA (2007) The impact of nodal isolated tumor cells on survival of breast cancer patients. Am J Surg 193(5):571–573; discussion 573–574

    Google Scholar 

  20. Kahn HJ, Hanna WM, Chapman JA, Trudeau ME, Lickley HL, Mobbs BG, Murray D, Pritchard KI, Sawka CA, McCready DR et al (2006) Biological significance of occult micrometastases in histologically negative axillary lymph nodes in breast cancer patients using the recent american joint committee on cancer breast cancer staging system. Breast J 12(4):294–301

    Article  PubMed  Google Scholar 

  21. Egger G, Liang G, Aparicio A, Jones PA (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429(6990):457–463

    Article  PubMed  CAS  Google Scholar 

  22. Karpf AR, Jones DA (2001) Reactivating the expression of methylation silenced genes in human cancer. Oncogene 21(35):5496–5503

    Article  CAS  Google Scholar 

  23. Baylin SB, Herman JG (2001) Promoter hypermethylation—can this change alone ever designate true tumor suppressor gene function? J Natl Cancer Inst 93(9):664–665

    Article  PubMed  CAS  Google Scholar 

  24. Jones PL, Wolffe AP (1999) Relationships between chromatin organization and DNA methylation in determining gene expression. Semin Cancer Biol 9(5):339–347

    Article  PubMed  CAS  Google Scholar 

  25. Mielnicki LM, Asch HL, Asch BB (2001) Genes, chromatin, and breast cancer: An epigenetic tale. J Mammary Gland Biol Neoplasia 6(2):169–182

    Article  PubMed  CAS  Google Scholar 

  26. Yang X, Yan L, Davidson NE (2001) DNA methylation in breast cancer. Endocr Relat Cancer 8(2):115–127

    Article  PubMed  CAS  Google Scholar 

  27. Widschwendter M, Jones PA (2002) DNA methylation and breast carcinogenesis. Oncogene 21(35):5462–5482

    Article  PubMed  CAS  Google Scholar 

  28. Sanchez-Cespedes M, Esteller M, Hibi K, Cope FO, Westra WH, Piantadosi S, Herman JG, Jen J, Sidransky D (1999) Molecular detection of neoplastic cells in lymph nodes of metastatic colorectal cancer patients predicts recurrence. Clin Cancer Res 5(9):2450–2454

    PubMed  CAS  Google Scholar 

  29. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 93(18):9821–9826

    Article  PubMed  CAS  Google Scholar 

  30. Machida EO, Brock MV, Hooker CM, Nakayama J, Ishida A, Amano J, Picchi MA, Belinsky SA, Herman JG, Taniguchi S et al (2006) Hypermethylation of ASC/TMS1 is a sputum marker for late-stage lung cancer. Cancer Res 66(12):6210–6218

    Article  PubMed  CAS  Google Scholar 

  31. van Engeland M, Weijenberg MP, Roemen GM, Brink M, de Bruine AP, Goldbohm RA, Van den Brandt PA, Baylin SB, de Goeij AF, Herman JG (2003) Effects of dietary folate and alcohol intake on promoter methylation in sporadic colorectal cancer: The Netherlands cohort study on diet and cancer. Cancer Res 63(12):3133–3137

    PubMed  Google Scholar 

  32. McShane LM, Altman DG, Sauderbrei W, Taube S, Gion M, Clark G (2006) Reporting recommendations for tumor MARKer prognostic studies (REMARK). Breast Cancer Res Treat 100:229–235

    Article  PubMed  Google Scholar 

  33. Caldeira JR, Prando EC, Quevedo FC, Moraes Netto FA, Rainho CA, Rogatto SR (2006) CDH1 promoter hypermethylation and E-cadherin protein expression in infiltrating breast cancer. BMC Cancer 6(1):48

    Article  PubMed  CAS  Google Scholar 

  34. Douglas DB, Akiyama Y, Carraway H, Belinsky SA, Esteller M, Gabrielson E, Weitzman S, Williams T, Herman JG, Baylin SB (2004) Hypermethylation of a small CpGuanine-rich region correlates with loss of activator protein-2alpha expression during progression of breast cancer. Cancer Res 64(5):1611–1620

    Article  PubMed  CAS  Google Scholar 

  35. Graff JR, Herman JG, Lapidus RG, Chopra H, Xu R, Jarrard DF, Isaacs WB, Pitha PM, Davidson NE, Baylin SB (1995) E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res 55(22):5195–5199

    PubMed  CAS  Google Scholar 

  36. Herman JG, Merlo A, Mao L, Lapidus RG, Issa JP, Davidson NE, Sidransky D, Baylin SB (1995) Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res 55(20):4525–4530

    PubMed  CAS  Google Scholar 

  37. Jhaveri MS, Morrow CS (1998) Methylation-mediated regulation of the glutathione S-transferase P1 gene in human breast cancer cells. Gene 210(1):1–7

    Article  PubMed  CAS  Google Scholar 

  38. Krop IE, Sgroi D, Porter DA, Lunetta KL, LeVangie R, Seth P, Kaelin CM, Rhei E, Bosenberg M, Schnitt S et al (2001) HIN-1, a putative cytokine highly expressed in normal but not cancerous mammary epithelial cells. Proc Natl Acad Sci USA 98(17):9796–9801

    Article  PubMed  CAS  Google Scholar 

  39. Lewis CM, Cler LR, Bu DW, Zochbauer-Muller S, Milchgrub S, Naftalis EZ, Leitch AM, Minna JD, Euhus DM (2005) Promoter hypermethylation in benign breast epithelium in relation to predicted breast cancer risk. Clin Cancer Res 11(1):166–172

    PubMed  CAS  Google Scholar 

  40. Yeo W, Wong WL, Wong N, Law BK, Tse GM, Zhong S (2005) High frequency of promoter hypermethylation of RASSF1A in tumorous and non-tumourous tissue of breast cancer. Pathology 37(2):125–130

    Article  PubMed  CAS  Google Scholar 

  41. Zochbauer-Muller S, Fong KM, Maitra A, Lam S, Geradts J, Ashfaq R, Virmani AK, Milchgrub S, Gazdar AF, Minna JD (2001) 5’ CpG island methylation of the FHIT gene is correlated with loss of gene expression in lung and breast cancer. Cancer Res 61(9):3581–3585

    PubMed  CAS  Google Scholar 

  42. Berman H, Zhang J, Crawford YG, Gauthier ML, Fordyce CA, McDermott KM, Sigaroudinia M, Kozakiewicz K, Tlsty TD (2005) Genetic and epigenetic changes in mammary epithelial cells identify a subpopulation of cells involved in early carcinogenesis. Cold Spring Harb Symp Quant Biol 70:317–327

    Article  PubMed  CAS  Google Scholar 

  43. Aoki R, Yasuda M, Torisu R, Nakamoto J, Yamamoto Y, Ito S (2007) Relationship between lymph node metastasis and E-cadherin expression in submucosal invasive gastric carcinomas with gastric-phenotype. J Med Invest 54(1–2):159–167

    Article  PubMed  Google Scholar 

  44. Pellikainen J, Kataja V, Ropponen K, Kellokoski J, Pietilainen T, Bohm J, Eskelinen M, Kosma VM (2002) Reduced nuclear expression of transcription factor AP-2 associates with aggressive breast cancer. Clin Cancer Res 8(11):3487–3495

    PubMed  CAS  Google Scholar 

  45. Bleiweiss IJ, Nagi CS, Jaffer S (2006) Axillary sentinel lymph nodes can be falsely positive due to iatrogenic displacement and transport of benign epithelial cells in patients with breast carcinoma. J Clin Oncol 24(13):2013–2018

    Article  PubMed  Google Scholar 

  46. Diaz NM, Vrcel V, Centeno BA, Muro-Cacho C (2005) Modes of benign mechanical transport of breast epithelial cells to axillary lymph nodes. Adv Anat Pathol 12(1):7–9

    Article  PubMed  Google Scholar 

  47. Carter BA, Jensen RA, Simpson JF, Page DL (2000) Benign transport of breast epithelium into axillary lymph nodes after biopsy. Am J Clin Pathol 113(2):259–265

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Flight Attendant Medical Research Institute (FAMRI), the Department of Defense Breast Cancer Research Program (BCRP) of the Office of Congressionally Directed Medical Research Programs (CDMRP), the NIH CA88843, and the Belfer and Avon Foundations. We extend our gratitude to agencies like these that enable scientific pursuits for the benefit of all cancer patients.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hetty E. Carraway.

Additional information

An invited commentary to this article can be found at doi:10.1007/s10549-008-0106-2.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(PDF 485 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carraway, H.E., Wang, S., Blackford, A. et al. Promoter hypermethylation in sentinel lymph nodes as a marker for breast cancer recurrence. Breast Cancer Res Treat 114, 315–325 (2009). https://doi.org/10.1007/s10549-008-0004-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-008-0004-7

Keywords

Navigation