Skip to main content
Log in

On the Differentiation of Foveal and Peripheral Early Visual Evoked Potentials

  • Short Communication
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

The C1 is one of the earliest visual evoked potentials observed following the onset of a patterned stimulus. The polarity of its peak is dependent on whether stimuli are presented in the upper or lower regions of the peripheral visual field, but has been argued to be negative for stimuli presented to the fovea. However, there has yet to be a systematic investigation into the extent to which the peripheral C1 (pC1) and foveal C1 (fC1) can be differentiated on the basis of response characteristics to different stimuli. The current study employed checkerboard patterns (Exp 1) and sinusoidal gratings of different spatial frequency (Exp 2) presented to the fovea or within one of the four quadrants of the peripheral visual field. The checkerboard stimuli yielded a sizable difference in peak component latency, with the fC1 peaking ~32 ms after the pC1. Further, the pC1 showed a band-pass response magnitude profile that peaked at 4 cycles per degree (cpd), whereas the fC1 was high-pass for spatial frequency, with a cut-off around 4 cpd. Finally, the scalp topographies of the pC1 and fC1 in both experiments differed greatly, with the fC1 being more posterior than the pC1. The results reported here call into question recent attempts to characterize general C1 processes without regard to whether stimuli are placed in the fovea or in the periphery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Notes

  1. We also ran the analyses using the electrodes traditionally targeted for measuring the C1 (i.e., those located along the central occipito-parietal scalp region), and obtained results similar to using the optimized electrode selection approach.

References

  • Ales JM, Yates JL, Norcia AM (2010) V1 is not uniquely identified by polarity reversals of responses to upper and lower visual field stimuli. Neuroimage 52:1401–1409

    Article  PubMed  PubMed Central  Google Scholar 

  • Ales J, Yates JL, Norcia AM et al (2013) On determining the intracranial sources of visual evoked potentials from scalp topography: a reply to Kelly et al. (this issue). Neuroimage 64:703–711

    Article  PubMed  Google Scholar 

  • Brady N, Field DJ (1995) What’s constant in contrast constancy? The effects of scaling on the perceived contrast of bandpass patterns. Vis Res 35:739–756

    Article  CAS  PubMed  Google Scholar 

  • Brunet D, Murray MM, Michel CM (2011) Spatiotemporal analysis of multichannel EEG: Cartool. Comput Intell Neurosci 2011:1–15

    Article  Google Scholar 

  • Clark VP, Fan S, Hillyard SA (1995) Identification of early visual evoked potential generators by retinotopic and topographic analysis. Hum Brain Mapp 2:170–187

    Article  Google Scholar 

  • De Cesarei A, Mastria S, Codispoti M (2013) Early spatial frequency processing of natural images: an ERP study. PLoS One 8:e65103

    Article  PubMed  PubMed Central  Google Scholar 

  • De Valois R, Albrecht D, Thorell L (1982) Spatial frequency selectivity of cells in macaque visual cortex. Vis Res 22:545–559

    Article  PubMed  Google Scholar 

  • Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21

    Article  PubMed  Google Scholar 

  • Di Russo F, Martinez A, Sereno MI, Pitzalis S, Hillyard SA (2001) Cortical sources of the early components of the visual evoked potential. Hum Brain Mapp 15(2):95–111

    Article  Google Scholar 

  • Ellemberg D, Hammarrenger B, Lepore F, Roy MS, Guillemot JP (2001) Contrast dependency of VEPs as a function of spatial frequency: the parvocellular and magnocellular contributions to human VEPs. Spat Vis 15(1):99–111

    Article  CAS  PubMed  Google Scholar 

  • Foster KH, Gaska JP, Nagler M, Pollen DA (1985) Spatial and temporal frequency selectivity of neurones in visual cortical areas V1 and V2 of the macaque monkey. J Physiol 365:331–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foxe JJ, Strugstad EC, Sehatpour P, Molholm S, Pasieka W, Schroeder CE, McCourt ME (2008) Parvocellular and magnocellular contributions to the initial generators of the visual evoked potential: high-density electrical mapping of the “C1” component. Brain Topogr 21(1):11–21

    Article  PubMed  Google Scholar 

  • Georgeson MA, Sullivan GD (1975) Contrast constancy: deblurring in human vision by spatial frequency channels. J Physiol 252:627–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen BC, Jacques T, Johnson AP, Ellemberg D (2011) From spatial frequency contrast to edge preponderance: the differential modulation of early visual evoked potentials by natural scene stimuli. Vis Neurosci 28(3):221–237

    Article  PubMed  Google Scholar 

  • Hansen BC, Johnson AP, Ellemberg D (2012) Different spatial frequency bands selectively signal for natural image statistics in the early visual system. J Neurophysiol 108:2160–2172

    Article  PubMed  Google Scholar 

  • James AC (2003) The pattern-pulse multifocal visual evoked potential. Invest Ophthalmol Vis Sci 44(2):879–890

    Article  PubMed  Google Scholar 

  • Jeffreys DA, Axford JG (1972a) Source locations of pattern-specific components of human visual evoked potentials. I. Component of striate cortical origin. Exp Brain Res 16:1–21

    CAS  PubMed  Google Scholar 

  • Jeffreys DA, Axford JG (1972b) Source locations of pattern-specific components of human visual evoked potentials. II. Component of extrastriate cortical origin. Exp Brain Res 16:22–40

    CAS  PubMed  Google Scholar 

  • Kelly SP, Schroeder CE, Lalor EC et al (2013a) What does polarity inversion of extrastriate activity tell us about striate contributions to the early VEP? A comment on Ales et al. (2010). Neuroimage 76:442–445

    Article  PubMed  Google Scholar 

  • Kelly SP, Vanegas MI, Schroeder CE, Lalor EC et al (2013b) The cruciform model of striate generation of the early VEP, re-illustrated, not revoked: a reply to Ales et al. (2013). Neuroimage 82:154–159

    Article  PubMed  PubMed Central  Google Scholar 

  • Lalor EC, Kelly SP, Foxe JJ (2012) Generation of the VESPA response to rapid contrast fluctuations is dominated by striate cortex: evidence from retinotopic mapping. Neuroscience 218:226–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller CE, Shapiro KL, Luck SJ (2015) Electrophysiological measurement of the effect of interstimulus competition on early cortical stages. NeuroImage 105:229–237

    Article  PubMed  PubMed Central  Google Scholar 

  • Murray IJ, Parry NRA, Carden D (1987) Human visual evoked potentials to chromatic and achromatic gratings. Clin Vis Sci 1:231–244

    Google Scholar 

  • Murray MM, Brunet D, Michel CM (2008) Topographic ERP analyses: a step-by-step tutorial review. Brain Topogr 20:249–264

    Article  PubMed  Google Scholar 

  • Musselwhite MJ, Jeffreys DA (1982) Pattern-evoked potentials and bloch’s law. Vision Res 22:897–903

    Article  CAS  PubMed  Google Scholar 

  • Musselwhite MJ, Jeffreys DA (1985) The influence of spatial frequency on the reaction times and evoked potentials recorded to grating pattern stimuli. Vis Res 25:1545–1555

    Article  CAS  PubMed  Google Scholar 

  • Parker DM, Salzen EA (1977) Latency changes in the human visual evoked response to sinusoidal gratings. Vis Res 17:1201–1204

    Article  CAS  PubMed  Google Scholar 

  • Parker DM, Salzen EA, Lishman JR (1982) The early wave of the visual evoked potential to sinusoidal gratings: Responses to quadrant stimulation as a function of spatial frequency. Electroencephalogr Clin Neurophysiol 53:427–435

    Article  CAS  PubMed  Google Scholar 

  • Pernet CR, Chauveau N, Gaspar C, Rousselet GA (2011) LIMO EEG: a toolbox for hierarchical linear modeling of electroencephalographic data. Comput Intell Neurosci 2011:831409

    Article  PubMed  PubMed Central  Google Scholar 

  • Reed JL, Marx MS, May JG (1984) Spatial frequency tuning in the visual evoked potential elicited by sine-wave gratings. Vis Res 9:1057–1062

    Article  Google Scholar 

  • Tobimatsu S, Tomoda H, Kato M (1995) Magnocellular and parvocellular contributions to visual evoked potentials in humans: stimulation with chromatic and achromatic gratings and apparent motion. J Neurol Sci 134:73–82

    Article  CAS  PubMed  Google Scholar 

  • Vassilev A, Mihaylova M, Bonnet C (2002) On the delay in processing high spatial frequency visual information: reaction time and VEP latency study of the effect of local intensity of stimulation. Vis Res 42(7):851–864

    Article  PubMed  Google Scholar 

  • Whittingstall K, Wilson D, Matthias S, Gerhard S (2008) Correspondence of visual evoked potentials with fmri signals in human visual cortex. Brain Topogr 21:86–92

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

National Science Foundation (1337614), James S McDonnell Foundation (220020430), and Colgate Research Council Grants to BCH; National Sciences and Engineering Research Council of Canada (NSERC) Grant to APJ; NSERC Grant (R0014772) to DE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce C. Hansen.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hansen, B.C., Haun, A.M., Johnson, A.P. et al. On the Differentiation of Foveal and Peripheral Early Visual Evoked Potentials. Brain Topogr 29, 506–514 (2016). https://doi.org/10.1007/s10548-016-0475-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-016-0475-5

Keywords

Navigation