Skip to main content
Log in

Predictive Regularity Representations in Violation Detection and Auditory Stream Segregation: From Conceptual to Computational Models

  • Review
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Predictive accounts of perception have received increasing attention in the past 20 years. Detecting violations of auditory regularities, as reflected by the Mismatch Negativity (MMN) auditory event-related potential, is amongst the phenomena seamlessly fitting this approach. Largely based on the MMN literature, we propose a psychological conceptual framework called the Auditory Event Representation System (AERS), which is based on the assumption that auditory regularity violation detection and the formation of auditory perceptual objects are based on the same predictive regularity representations. Based on this notion, a computational model of auditory stream segregation, called CHAINS, has been developed. In CHAINS, the auditory sensory event representation of each incoming sound is considered for being the continuation of likely combinations of the preceding sounds in the sequence, thus providing alternative interpretations of the auditory input. Detecting repeating patterns allows predicting upcoming sound events, thus providing a test and potential support for the corresponding interpretation. Alternative interpretations continuously compete for perceptual dominance. In this paper, we briefly describe AERS and deduce some general constraints from this conceptual model. We then go on to illustrate how these constraints are computationally specified in CHAINS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. These correspond to auditory sensory memory representations of the classical MMN model (e.g. Näätänen 1990). We prefer the term auditory stimulus event representations as a stimulus event is represented.

References

  • Althen H, Grimm S, Escera C (2013) Simple and complex acoustic regularities are encoded at different levels of the auditory hierarchy. Eur J Neurosci 38(10):3448–3455

    Google Scholar 

  • Baldeweg T (2007) ERP repetition effects and mismatch negativity generation—A predictive coding perspective. J Psychophysiol 21(3–4):204–213

    Article  Google Scholar 

  • Beauvois MW, Meddis R (1991) A computer-model of auditory stream segregation. Q J Exp Psychol Sect A 43(3):517–541

    Article  CAS  Google Scholar 

  • Bendixen A, Roeber U, Schröger E (2007) Regularity extraction and application in dynamic auditory stimulus sequences. J Cogn Neurosci 19(10):1664–1677

    Article  PubMed  Google Scholar 

  • Bendixen A, Prinz WG, Horváth J, Trujillo-Barreto NJ, Schröger E (2008) Rapid extraction of auditory feature contingencies. Neuroimage 41(3):1111–1119

    Article  PubMed  Google Scholar 

  • Bendixen A, Schröger E, Winkler I (2009) I heard that coming: event-related potential evidence for stimulus-driven prediction in the auditory system. J Neurosci 29(26):8447–8451

    Article  CAS  PubMed  Google Scholar 

  • Bendixen A, Denham SL, Gyimesi K, Winkler I (2010) Regular patterns stabilize auditory streams. J Acoust Soc Am 128(6):3658–3666

    Article  PubMed  Google Scholar 

  • Bendixen A, SanMiguel I, Schröger E (2012a) Early electrophysiological indicators for predictive processing in audition: a review. Int J Psychophysiol 83(2):120–131

    Article  PubMed  Google Scholar 

  • Bendixen A, Schröger E, Ritter W, Winkler I (2012b) Regularity extraction from non-adjacent sounds. Frontiers Psychol 3:143

    Article  Google Scholar 

  • Bendixen A, Bőhm TM, Szalárdy O, Mill R, Denham SL, Winkler I (2013) Different roles of similarity and predictability in auditory stream segregation. Learn Percept 5:37–54

    Article  Google Scholar 

  • Boh B, Herholz SC, Lappe C, Pantev C (2011) Processing of complex auditory patterns in musicians and nonmusicians. PLoS One 6(7):e21458

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bregman AS (1990) Auditory scene analysis. The perceptual organization of sound. MIT PressMA, Cambridge

    Google Scholar 

  • Costa-Faidella J, Grimm S, Slabu L, Diaz-Santaella F, Escera C (2011) Multiple time scales of adaptation in the auditory system as revealed by human evoked potentials. Psychophysiology 48(6):774–783

    Article  PubMed  Google Scholar 

  • Cowan N (1984) On short and long auditory stores. Psychol Bull 96(2):341–370

    Article  CAS  PubMed  Google Scholar 

  • Cowan N, Winkler I, Teder W, Näätänen R (1993) Memory prerequisites of mismatch negativity in the auditory event-related potential (ERP). J Exp Psychol-Learn Mem Cogn 19(4):909–921

    Article  CAS  PubMed  Google Scholar 

  • Deike S, Heil P, Böckmann-Barthel M, Brechmann A (2012) The build-up of auditory stream segregation: a different perspective. Frontiers Psychol 3:461

    Article  Google Scholar 

  • Denham SL, Gyimesi K, Stefanics G, Winkler I (2013) Perceptual bistability in auditory streaming: how much do stimulus features matter? Learn Percept 5(2):73–100

    Article  Google Scholar 

  • Elhilali M, Shamma SA (2008) A cocktail party with a cortical twist: how cortical mechanisms contribute to sound segregation. J Acoust Soc Am 124(6):3751–3771

    Article  PubMed Central  PubMed  Google Scholar 

  • Escera C, Leung S, Grimm S (2013) Deviance detection based on regularity encoding along the auditory hierarchy: electrophysiological evidence in humans. Brain Topogr. doi:10.1007/s10548-013-0328-4

  • Fowler CA, Rosenblum LD (1990) Duplex perception—a comparison of monosyllables and slamming doors. J Exp Psychol-Hum Percep Perform 16(4):742–754

    Article  CAS  Google Scholar 

  • Friston K, Kiebel S (2009a) Cortical circuits for perceptual inference. Neural Netw 22(8):1093–1104

    Article  PubMed Central  PubMed  Google Scholar 

  • Friston K, Kiebel S (2009b) Predictive coding under the free-energy principle. Philos Trans R Soc Lond B 364(1521):1211–1221

    Article  Google Scholar 

  • Garrido MI, Kilner JM, Stephan KE, Friston KJ (2009) The mismatch negativity: a review of underlying mechanisms. Clin Neurophysiol 120(3):453–463

    Article  PubMed Central  PubMed  Google Scholar 

  • Griffiths TD, Warren JD (2004) Opinion: what is an auditory object? Nat Review Neurosci 5:887–892

    Article  CAS  Google Scholar 

  • Grimm S, Escera C (2012) Auditory deviance detection revisited: evidence for a hierarchical novelty system. Int J Psychophysiol 85(1):88–92

    Article  PubMed  Google Scholar 

  • Grossberg S, Govindarajan KK, Wyse LL, Cohen MA (2004) ARTSTREAM: a neural network model of auditory scene analysis and source segregation. Neural Netw 17(4):511–536

    Article  PubMed  Google Scholar 

  • Haenschel C, Vernon DJ, Dwivedi P, Gruzelier JH, Baldeweg T (2005) Event-related brain potential correlates of human auditory sensory memory-trace formation. J Neurosci 25(45):10494–10501

    Article  CAS  PubMed  Google Scholar 

  • Helmholtz Hv (1867) Handbuch der physiologischen Optik. Allgemeine Encyklopädie der Physik, vol Bd 9. Voss, Leipzig

    Google Scholar 

  • Herrmann CS, Munk MHJ, Engel AK (2004) Cognitive functions of gamma-band activity: memory match and utilization. Trends Cogn Sci 8(8):347–355

    Article  PubMed  Google Scholar 

  • Horváth J, Czigler I, Sussman E, Winkler I (2001) Simultaneously active pre-attentive representations of local and global rules for sound sequences in the human brain. Cogn Brain Res 12(1):131–144

    Article  Google Scholar 

  • Horváth J, Winkler I, Bendixen A (2008) Do N1/MMN, P3a, and RON form a strongly coupled chain reflecting the three stages of auditory distraction? Biol Psychol 79(2):139–147

    Article  PubMed  Google Scholar 

  • Jacobs AM, Grainger J (1994) Models of visual word recognition—sampling the state-of-the-art. J Exp Psychol-Hum Percep Perform 20(6):1311–1334

    Article  Google Scholar 

  • Jones MR (1976) Time, our lost dimension: toward a new theory of perception, attention, and memory. Psychol Rev 83(5):323–355

    Article  CAS  PubMed  Google Scholar 

  • Kiebel SJ, von Kriegstein K, Daunizeau J, Friston KJ (2009) Recognizing sequences of sequences. PLoS Comput Biol 5(8):e1000464

    Article  PubMed Central  PubMed  Google Scholar 

  • Köhler W (1947) Gestalt psychology: an introduction to new concepts in modern psychology. Liveright Publishing, New York

    Google Scholar 

  • Kubovy M, Van Valkenburg D (2001) Auditory and visual objects. Cognition 80:97–126

    Article  CAS  PubMed  Google Scholar 

  • Lieder F, Daunizeau J, Garrido MI, Friston KJ, Stephan KE (2013) Modelling trial-by-trial changes in the mismatch negativity. PLoS Comput Biol 9(2):e1002911

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Massaro DW (1972) Preperceptual images, processing time, and perceptual units in auditory perception. Psychol Rev 79:124–145

    Article  CAS  PubMed  Google Scholar 

  • McCabe SL, Denham MJ (1997) A model of auditory streaming. J Acoust Soc Am 101(3):1611–1621

    Article  Google Scholar 

  • Mill R, Bőhm T, Bendixen A, Winkler I, Denham SL CHAINS—Competition and cooperation between fragmentary event predictors in a model of auditory scene analysis. In: Information Sciences and Systems (CISS), 2011, IEEE 45th Annual Conference on, Baltimore, pp 1–6, 2011

  • Mill RW, Bőhm TM, Bendixen A, Winkler I, Denham SL (2013) Modelling the emergence and dynamics of perceptual organisation in auditory streaming. PLoS Comput Biol 9(3):e1002925

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moore BCJ, Gockel H (2002) Factors influencing sequential stream segregation. Acta Acust United Acust 88(3):320–333

    Google Scholar 

  • Moore BCJ, Gockel HE (2012) Properties of auditory stream formation. Philos Trans Royal Soc B 367(1591):919–931

    Article  Google Scholar 

  • Müller D, Widmann A, Schröger E (2005) Deviance-repetition effects as a function of stimulus feature, feature value variation, and timing: a mismatch negativity study. Biol Psychol 68(1):1–14

    Article  PubMed  Google Scholar 

  • Mumford D (1992) On the computational architecture of the neocortex II. The role of cortico-cortical loops. Biol Cybern 66(3):241–251

    Article  CAS  PubMed  Google Scholar 

  • Näätänen R (1990) The Role of attention in auditory information-processing as revealed by event-related potentials and other brain measures of cognitive function. Behav Brain Sci 13(2):201–232

    Article  Google Scholar 

  • Näätänen R, Winkler I (1999) The concept of auditory stimulus representation in cognitive neuroscience. Psychol Bull 125(6):826–859

    Article  PubMed  Google Scholar 

  • Näätänen R, Gaillard A, Mäntysalo S (1978) Early selective-attention effect on evoked potential reinterpreted. Acta Psychol 42:313–329

    Article  Google Scholar 

  • Näätänen R, Kujala T, Winkler I (2011) Auditory processing that leads to conscious perception: a unique window to central auditory processing opened by the mismatch negativity and related responses. Psychophysiology 48(1):4–22

    Article  PubMed  Google Scholar 

  • Neisser U (1967) Cognitive psychology. Appleton-Century-Crofts, New York

    Google Scholar 

  • Paavilainen P, Arajärvi P, Takegata R (2007) Preattentive detection of nonsalient contingencies between auditory features. NeuroReport 18(2):159–163

    Article  PubMed  Google Scholar 

  • Rao RPN, Ballard DH (1999) Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci 2(1):79–87

    Article  CAS  PubMed  Google Scholar 

  • Rensink RA (2000) Seeing, sensing, and scrutinizing. Vision Res 40(10–12):1469–1487

    Article  CAS  PubMed  Google Scholar 

  • Rinne T, Särkkä A, Degerman A, Schröger E, Alho K (2006) Two separate mechanisms underlie auditory change detection and involuntary control of attention. Brain Res 1077:135–143

    Article  CAS  PubMed  Google Scholar 

  • Ritter W, Sussman E, Molholm S (2000) Evidence that the mismatch negativity system works on the basis of objects. NeuroReport 11(1):61–63

    Article  CAS  PubMed  Google Scholar 

  • Ritter W, De Sanctis P, Molholm S, Javitt DC, Foxe JJ (2006) Preattentively grouped tones do not elicit MMN with respect to each other. Psychophysiology 43(5):423–430

    Article  PubMed Central  PubMed  Google Scholar 

  • Schröger E (2007) Mismatch negativity - A microphone into auditory memory. J Psychophysiol 21(3–4):138–146

    Article  Google Scholar 

  • Schwartz JL, Grimault N, Hupé J-M, Moore BC, Pressnitzer D (2012) Multistability in perception: binding sensory modalities, an overview. Philos Trans R Soc Lond B 367(1591):896–905

    Article  Google Scholar 

  • Sokolov EN (1963) Higher nervous functions: the orienting reflex. Annu Rev Physiol 25:545–580

    Article  CAS  PubMed  Google Scholar 

  • Sussman ES (2005) Integration and segregation in auditory scene analysis. J Acoust Soc Am 117(3 Pt 1):1285–1298

    Article  PubMed  Google Scholar 

  • Sussman ES, Gumenyuk V (2005) Organization of sequential sounds in auditory memory. NeuroReport 16(13):1519–1523

    Article  PubMed  Google Scholar 

  • Sussman ES, Horváth J, Winkler I, Orr M (2007) The role of attention in the formation of auditory streams. Perc Psychophys 69(1):136–152

    Article  Google Scholar 

  • Szalárdy O, Winkler I, Schröger E, Widmann A, Bendixen A (2013) Foreground-background discrimination indicated by event-related brain potentials in a new auditory multistability paradigm. Psychophysiology 12:1239–1250

    Google Scholar 

  • van Noorden LPAS (1975) Temporal coherence in the perception of tone sequences. Technical University, Eindhoven

    Google Scholar 

  • Wacongne C, Labyt E, van Wassenhove V, Bekinschtein T, Naccache L, Dehaene S (2011) Evidence for a hierarchy of predictions and prediction errors in human cortex. Proc Natl Acad Sci USA 108(51):20754–20759

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wacongne C, Changeux JP, Dehaene S (2012) A neuronal model of predictive coding accounting for the mismatch negativity. J Neurosci 32(11):3665–3678

    Article  CAS  PubMed  Google Scholar 

  • Wang DL, Chang P (2008) An oscillatory correlation model of auditory streaming. Cogn Neurodyn 2(1):7–19

    Article  PubMed Central  PubMed  Google Scholar 

  • Winkler I (2007) Interpreting the mismatch negativity. J Psychophysiol 21(3–4):147–163

    Article  Google Scholar 

  • Winkler I, Czigler I (1998) Mismatch negativity: deviance detection or the maintenance of the ‘standard’. NeuroReport 9(17):3809–3813

    Article  CAS  PubMed  Google Scholar 

  • Winkler I, Czigler I (2012) Evidence from auditory and visual event-related potential (ERP) studies of deviance detection (MMN and vMMN) linking predictive coding theories and perceptual object representations. Int J Psychophysiol 83(2):132–143

    Article  PubMed  Google Scholar 

  • Winkler I, Karmos G, Näätänen R (1996) Adaptive modeling of the unattended acoustic environment reflected in the mismatch negativity event-related potential. Brain Res 742(1–2):239–252

    Article  CAS  PubMed  Google Scholar 

  • Winkler I, Korzyukov O, Gumenyuk V, Cowan N, Linkenkaer-Hansen K, Ilmoniemi RJ, Alho K, Näätänen R (2002) Temporary and longer term retention of acoustic information. Psychophysiology 39(4):530–534

    Article  PubMed  Google Scholar 

  • Winkler I, Takegata R, Sussman E (2005) Event-related brain potentials reveal multiple stages in the perceptual organization of sound. Cogn Brain Res 25(1):291–299

    Article  Google Scholar 

  • Winkler I, van Zuijen TL, Sussman E, Horváth J, Näätänen R (2006) Object representation in the human auditory system. Eur J Neurosci 24(2):625–634

    Article  PubMed Central  PubMed  Google Scholar 

  • Winkler I, Denham SL, Nelken I (2009) Modeling the auditory scene: predictive regularity representations and perceptual objects. Trends Cogn Sci 13(12):532–540

    Article  PubMed  Google Scholar 

  • Winkler I, Denham S, Mill R, Bőhm TM, Bendixen A (2012) Multistability in auditory stream segregation: a predictive coding view. Philos Trans Royal Soc B 367(1591):1001–1012

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Hungarian Academy of Sciences (Lendület project, LP2012-36/2012 to IW), by the Reinhart Koselleck grant of the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG, SCH 375/20-1 to ES), by the DFG Cluster of Excellence 1077 “Hearing4all”, by the German Academic Exchange Service (Deutscher Akademischer Austauschdient, DAAD, Project 56265741), and by the Hungarian Scholarship Board (Magyar Ösztöndíj Bizottság, MÖB, Project 39589).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erich Schröger.

Additional information

This is one of several papers published together in Brain Topography in the “Special Issue: Mismatch Negativity”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schröger, E., Bendixen, A., Denham, S.L. et al. Predictive Regularity Representations in Violation Detection and Auditory Stream Segregation: From Conceptual to Computational Models. Brain Topogr 27, 565–577 (2014). https://doi.org/10.1007/s10548-013-0334-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-013-0334-6

Keywords

Navigation