Skip to main content
Log in

Air–Sea \(\mathrm{CO}_{2}\) Gas Transfer Velocity in a Shallow Estuary

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The air–sea transfer velocity of \(\mathrm{CO}_{2}\, (k_{\mathrm{CO}_{2}})\) was investigated in a shallow estuary in March to July 2012, using eddy-covariance measurements of \(\mathrm{CO}_{2}\) fluxes and measured air–sea \(\mathrm{CO}_{2}\) partial-pressure differences. A data evaluation method that eliminates data by nine rejection criteria in order to heighten parametrization certainty is proposed. We tested the data evaluation method by comparing two datasets: one derived using quality criteria related solely to the eddy-covariance method, and the other derived using quality criteria based on both eddy-covariance and cospectral peak methods. The best parametrization of transfer velocity normalized to a Schmidt number of 600 \((k_{600})\) was determined to be: \(k_{600} = 0.3\,{U_{10}}^{2.5}\) where \(U_{10}\) is the wind speed in m \(\mathrm{s}^{-1}\) at 10 m; \(k_{600}\) is based on \(\mathrm{CO}_{2}\) fluxes calculated by the eddy-covariance method and including the cospectral peak method criteria. At low wind speeds, the transfer velocity in the shallow water estuary was lower than in other coastal waters, possibly a symptom of low tidal amplitude leading to low intensity water turbulence. High transfer velocities were recorded above wind speeds of 5 m \(\mathrm{s}^{-1}\), believed to be caused by early-breaking waves and the large fetch (6.5 km) of the estuary. These findings indicate that turbulence in both air and water influences the transfer velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Algesten G, Wikner J, Sobek S, Tranvik LJ, Jansson M (2004) Seasonal variation of \({\rm CO}_{2}\) saturation in the Gulf of Bothnia: indications of marine net heterotrophy. Global Biogeochem Cycles 18(4):GB4021

    Article  Google Scholar 

  • Alvarez M, Fernandez E, Perez FF (1999) Air–sea \({\rm CO}_{2}\) fluxes in a coastal embayment affected by upwelling: physical versus biological control. Oceanol Acta 22(5):499–515

    Article  Google Scholar 

  • Bakker DCE, de Baar HJW, de Wilde HPJ (1996) Dissolved carbon dioxide in Dutch coastal waters. Mar Chem 55(3–4):247–263

    Article  Google Scholar 

  • Bakker DCE, de Baar HJW, Bathmann UV (1997) Changes of carbon dioxide in surface waters during spring in the Southern Ocean. Deep Sea Res II 44(1–2):91–127

    Article  Google Scholar 

  • Bates NR, Takahashi T, Chipman DW, Knap AH (1998) Variability of p\({\rm CO}_{2}\) on diel to seasonal timescales in the Sargasso Sea near Bermuda. J Geophys Res 103:15567–15585

    Article  Google Scholar 

  • Battjes JA, Janssen JPFM (1978) Energy loss and set-up due to breaking of random waves. Coast Eng 1(16):569–587

    Google Scholar 

  • Belanger T, Korzun E (1991) Critique of floating-dome technique for estimating reaeration rates. J Environ Eng 117(1):144–150

    Article  Google Scholar 

  • Borges AV, Delille B, Schiettecatte LS, Gazeau F, Abril G, Frankignoulle M (2004a) Gas transfer velocities of \({\rm CO}_{2}\) in three European estuaries (Randers Fjord, Scheldt, and Thames). Limnol Oceanogr 49(5):1630–1641

    Article  Google Scholar 

  • Borges AV, Vanderborght JP, Schiettecatte LS, Gazeau F, Ferron-Smith S, Delille B, Frankignoulle M (2004b) Variability of the gas transfer velocity of \({\rm CO}_{2}\) in a macrotidal estuary (the Scheldt). Estuaries 27(4):593–603

    Article  Google Scholar 

  • Borges AV, Schiettecatte LS, Abril G, Delille B, Gazeau E (2006) Carbon dioxide in European coastal waters. Estuar Coast Shelf Sci 70(3):375–387

    Article  Google Scholar 

  • Broecker WS, Peng T-H (1984) Gas exchange measurements in natural systems. In: Brutsaert W, Jirka GH (eds) Gas transfer at water surfaces. Reidel Publishing Co., Dordrecht, 639 pp

  • Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux–profile relationships in the atmospheric surface layer. J Atmos Sci 28(2):181–189

    Article  Google Scholar 

  • Cai WJ (2011) Estuarine and coastal ocean carbon paradox: \({\rm CO}_2\) sinks or sites of terrestrial carbon incineration? Annu Rev Mar Sci 3:123–145

    Article  Google Scholar 

  • Carini S, Weston N, Hopkinson C, Tucker J, Giblin A, Vallino J (1996) Gas exchange rates in the Parker River estuary, Massachusetts. Biol Bull 191(2):333–334

    Google Scholar 

  • Carter DJT (1982) Prediction of wave height and period for a constant wind velocity using the JONSWAP results. Ocean Eng 9(1):17–33

    Article  Google Scholar 

  • Clark JF, Wanninkhof R, Schlosser P, Simpson HJ (1994) Gas exchange rates in the tidal Hudson river using a dual tracer technique. Tellus B 46:274–285

    Article  Google Scholar 

  • Clarke A, Juggins S, Conley D (2003) A 150-year reconstruction of the history of coastal eutrophication in Roskilde Fjord, Denmark. Mar Pollu Bull 46(12):1615–1618

    Article  Google Scholar 

  • Conley DJ, Kaas H, Mohlenberg F, Rasmussen B, Windolf J (2000) Characteristics of Danish estuaries. Estuaries 23(6):820–837

    Article  Google Scholar 

  • Dellwik E, Mann J, Larsen KS (2010) Flow tilt angles near forest edges—part 1: sonic anemometry. Biogeosciences 7:1745–1757

    Article  Google Scholar 

  • DMI (2011) http://www.dmi.dk/dmi/index/danmark/klimanormaler.htm

  • El-Madany TS, Griessbaum F, Fratini G, Juang JY, Chang SC, Klemm O (2013) Comparison of sonic anemometer performance under foggy conditions. Agric For Meteorol 173:63–73

    Article  Google Scholar 

  • Else BGT, Papakyriakou TN, Galley RJ, Drennan WM, Miller LA, Thomas H (2011) Wintertime \(\text{ CO }_{2}\) fluxes in an Arctic polynya using eddy covariance: evidence for enhanced air–sea gas transfer during ice formation. J Geophys Res 116:C00G03

    Google Scholar 

  • Fairall CW, Larsen SE (1986) Inertial-dissipation methods and turbulent fluxes at the air–ocean interface. Boundary-Layer Meteorol 34(3):287–301

    Article  Google Scholar 

  • Fairall CW, Hare JE, Edson JB, McGillis W (2000) Parameterization and micrometeorological measurement of air–sea gas transfer. Boundary-Layer Meteorol 96(1–2):63–105

    Article  Google Scholar 

  • Fangohr S, Woolf DK (2007) Application of new parameterizations of gas transfer velocity and their impact on regional and global marine \({\rm CO}_{2}\) budgets. J Mar Syst 66(1–4):195–203

    Article  Google Scholar 

  • Fauser P, Vikelsøe J, Sørensen PB, Carlsen L (2009) Fate modelling of DEHP in Roskilde Fjord, Denmark. Environ Model Assess 14(2):209–220

    Article  Google Scholar 

  • Fenchel T, Glud RN (2000) Benthic primary production and O\(_{2}\)\({\rm CO}_{2}\) dynamics in a shallow-water sediment: spatial and temporal heterogeneity. Ophelia 53(2):159–171

    Google Scholar 

  • Flindt MR, Kamp-Nielsen L, Marques JC, Pardal MA, Bocci M, Bendoricchio G, Salomonsen J, Nielsen SN, Jørgensen SE (1997) Description of the three shallow estuaries: Mondego River (Portugal), Roskilde Fjord (Denmark) and the Lagoon of Venice (Italy). Ecol Model 102(1):17–31

    Article  Google Scholar 

  • Frankignoulle M, Abril G, Borges A, Bourge I, Canon C, Delille B, Libert E, Theate JM (1998) Carbon dioxide emission from European estuaries. Science 282:434–436

    Article  Google Scholar 

  • Grelle A, Lindroth A (1994) Flow distortion by a solent sonic anemometer: wind tunnel calibration and its assessment for flux measurements over forest and field. J Atmos Ocean Technol 11(6):1529–1542

    Article  Google Scholar 

  • Griessbaum F, Moat BI, Narita Y, Yelland MJ, Klemm O (2010) Uncertainties in wind speed dependent \({\rm CO}_{2}\) transfer velocities due to airflow distortion at anemometer sites on ships. Atmos Chem Phys 10(11):5123–5133

    Article  Google Scholar 

  • Hilligsøe KM, Richardson K, Bendtsen J, Sørensen LL, Nielsen TG, Lyngsgaard MM (2011) Linking phytoplankton community size composition with temperature, plankton food web structure and sea–air \({\rm CO}_{2}\) flux. Deep Sea Res I 58:826–838

    Article  Google Scholar 

  • Huang Y, Song J, Wang J, Fan C (2012) Air–sea carbon-dioxide flux estimated by eddy covariance method from a buoy observation. Acta Oceanol Sin 31(6):66–71

    Article  Google Scholar 

  • Jacobs C, Kjeld JF, Nightingale P, Upstill-Goddard R, Larsen S, Oost W (2002) Possible errors in \({\rm CO}_{2}\) air–sea transfer velocity from deliberate tracer releases and eddy covariance measurements due to near-surface concentration gradients. J Geophys Res 107:3128

    Article  Google Scholar 

  • Jacobs CMJ, Kohsiek W, Oost WA (1999) Air–sea fluxes and transfer velocity of \(\text{ CO }_{2}\) over the North Sea: results from ASGAMAGE. Tellus B 51(3):629–641

    Article  Google Scholar 

  • Kaimal JC, Wyngaard JC, Izumi Y, Coté OR (1972) Spectral characteristics of surface-layer turbulence. Q J R Meteorol Soc 98:563–589

    Article  Google Scholar 

  • Katsardi V, de Lutio L, Swan C (2012) An experimental study of large waves in intermediate and shallow water depths. Part I: wave height and crest height statistics. Coast Eng 73:43–57

    Article  Google Scholar 

  • Kljun N, Calanca P, Rotach MW, Schmid HP (2004) A simple parameterisation for flux footprint predictions. Boundary-Layer Meteorol 112(3):503–523

    Article  Google Scholar 

  • Kohsiek W (2000) Water vapor cross-sensitivity of open path \(\text{ H }_{2}\text{ O }/\text{ CO }_{2}\) sensors. J Atmos Ocean Technol 17(3):299–311

    Article  Google Scholar 

  • Kormann R, Meixner F (2001) An analytical footprint model for non-neutral stratification. Boundary-Layer Meteorol 99(2):207–224

    Article  Google Scholar 

  • Kuss J, Nagel K, Schneider B (2004) Evidence from the Baltic Sea for an enhanced \(\text{ CO }_{2}\) air–sea transfer velocity. Tellus B 56(2):175–182

    Article  Google Scholar 

  • Kuss J, Roeder W, Wlost KP, DeGrandpre MD (2006) Time-series of surface water \(\text{ CO }_{2}\) and oxygen measurements on a platform in the central Arkona Sea (Baltic Sea): Seasonality of uptake and release. Mar Chem 101(3–4):220–232

    Article  Google Scholar 

  • Leinweber A, Gruber N, Frenzel H, Friederich GE, Chavez FP (2009) Diurnal carbon cycling in the surface ocean and lower atmosphere of Santa Monica Bay, California. Geophys Res Lett 36(8):L08601

    Article  Google Scholar 

  • EddyPro 4.0.0 (2012) Eddy Covariance Processing Software, LI-COR Biosciences, LI-COR Inc., Lincoln, Nebraska, 68504, USA; Software available at: http://www.licor.com/env/products/eddy_covariance/software.html

  • Liss PS, Merlivat L (1986) Air–sea gas exchange rates: introduction and synthesis. In: The role of air-sea exchange in geochemical cycling. D. Reidel Publishing Company, Dordrecht, p 17

  • Marino R, Howarth RW (1993) Atmospheric oxygen-exchange in the Hudson River: dome measurements and comparison with other natural waters. Estuaries 16(3A):433–445

    Article  Google Scholar 

  • Mauder M, Foken T (2004) Documentation and instruction manual of the eddy covariance software package TK2, 45 pp

  • McGillis WR, Wanninkhof R (2006) Aqueous \(\text{ CO }_{2}\) gradients for air–sea flux estimates. Mar Chem 98(1):100–108

    Article  Google Scholar 

  • Moncrieff JB, Massheder JM, de Bruin H, Elbers J, Friborg T, Heusinkveld B, Kabat P, Scott S, Soegaard H, Verhoef A (1997) A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. J Hydrol 189(1–4):589–611

    Article  Google Scholar 

  • Moncrieff J, Clement R, Finnigan J, Meyers T (2005) Averaging, detrending, and filtering of eddy covariance time series. In: Handbook of micrometeorology. Springer, Dordrecht, p 25

  • Murthy BS, Latha R, Sukumaran C, Shivaji A, Sivaramakrishnan S (2009) On the influence of spatial heterogeneity on an internal boundary layer at a short fetch. J Earth Syst Sci 118(1):61–70

    Google Scholar 

  • Nightingale PD, Liss PS, Schlosser P (2000) Measurements of air–sea gas transfer during an open ocean algal bloom. Geophys Res Lett 27(14):2117–2120

    Article  Google Scholar 

  • Norman M, Rutgersson A, Sørensen LL, Sahlée E (2012) Methods for estimating air–sea fluxes of \(\text{ CO }_{2}\) using high-frequency measurements. Boundary-Layer Meteorol 144(3):379–400

    Article  Google Scholar 

  • Norman M, Rutgersson A, Sahlée E (2013) Impact of improved air–sea gas transfer velocity on fluxes and water chemistry in a Baltic Sea model. J Mar Syst 111–112:175–188

    Article  Google Scholar 

  • Olsen A, Wanninkhof R, Trinanes JA, Johannessen T (2005) The effect of wind speed products and wind speed-gas exchange relationships on interannual variability of the air–sea \(\text{ CO }_{2}\) gas transfer velocity. Tellus B 57(2):95–106

    Article  Google Scholar 

  • Peirce B (1852) Criterion for the rejection of doubtful observations. Astron J 2:161–163

    Google Scholar 

  • Polsenaere P, Lamaud E, Lafon V, Bonnefond J-M, Bretel P (2012) Spatial and temporal \(\text{ CO }_{2}\) exchanges measured by eddy covariance over a temperate intertidal flat and their relationships to net ecosystem production. Biogeosciences 9(1):249–268

    Article  Google Scholar 

  • Prytherch J, Yelland MJ, Pascal RW, Moat BI, Skjelvan I, Neill CC (2010) Direct measurements of the \(\text{ CO }_{2}\) flux over the ocean: development of a novel method. Geophys Res Lett 37:L03607

    Google Scholar 

  • Raymond PA, Cole JJ (2001) Gas exchange in rivers and estuaries: choosing a gas transfer velocity. Estuaries 24(2):312–317

    Article  Google Scholar 

  • Raymond PA, Bauer JE, Cole JJ (2000) Atmospheric \(\text{ CO }_{2}\) evasion, dissolved inorganic carbon production, and net heterotrophy in the York River estuary. Limnol Oceanogr 45(8):1707–1717

    Article  Google Scholar 

  • Read JS, Hamilton DP, Desai AR, Rose KC, MacIntyre S, Lenters JD, Smyth RL, Hanson PC, Cole JJ, Staehr PA, Rusak JA, Pierson DC, Brookes JD, Laas A, Wu CH (2012) Lake-size dependency of wind shear and convection as controls on gas exchange. Geophys Res Lett 39(9):L09405

    Article  Google Scholar 

  • Ross SM (2003) Peirce’s criterion for the elimination of suspect experimental data. J Eng Technol 20(2):38–41

    Google Scholar 

  • Rutgersson A, Smedman A (2010) Enhanced air–sea \(\text{ CO }_{2}\) transfer due to water-side convection. J Mar Syst 80(1–2):125–134

    Article  Google Scholar 

  • Rutgersson A, Norman M, Schneider B, Pettersson H, Sahlée E (2008) The annual cycle of carbon dioxide and parameters influencing the air–sea carbon exchange in the Baltic Proper. J Mar Syst 74:381–394

    Article  Google Scholar 

  • Rutgersson A, Smedman A, Sahlée E (2011) Oceanic convective mixing and the impact on air–sea gas transfer velocity. Geophys Res Lett 38(2):L02602

    Article  Google Scholar 

  • Sejr MK, Krause-Jensen D, Rysgaard S, Sørensen LL, Christensen PB, Glud RN (2011) Air–sea flux of \(\text{ CO }_{2}\) in arctic coastal waters influenced by glacial melt water and sea ice. Tellus B 63(5):815–822

    Article  Google Scholar 

  • Sørensen LL, Larsen SE (2010) Atmosphere–surface fluxes of \(\text{ CO }_{2}\) using spectral techniques. Boundary-Layer Meteorol 136:59–81

    Article  Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic, Dordrecht, 666 pp

  • Takahashi T, Sutherland SC, Wanninkhof R, Sweeney C, Feely RA, Chipman DW, Hales B, Friederich G, Chavez F, Sabine C, Watson A, Bakker DCE, Schuster U, Metzl N, Yoshikawa-Inoue H, Ishii M, Midorikawa T, Nojiri Y, Kortzinger A, Steinhoff T, Hoppema M, Olafsson J, Arnarson TS, Tilbrook B, Johannessen T, Olsen A, Bellerby R, Wong CS, Delille B, Bates NR, de Baar HJW (2009) Climatological mean and decadal change in surface ocean p\(\text{ CO }_{2}\), and net sea–air \(\text{ CO }_{2}\) flux over the global oceans. Deep Sea Res I 56:554–577

    Article  Google Scholar 

  • Upstill-Goddard RC, Frost T (1999) Air–sea gas exchange into the millennium: progress and uncertainties. Oceanogr Mar Biol Annu Rev 37:1–45

    Google Scholar 

  • Upstill-Goddard RC, Watson AJ, Liss PS, Liddicoat MI (1990) Gas transfer velocities in lakes measured with SF\(_{6}\). Tellus B 42(4):364–377

    Article  Google Scholar 

  • Wanninkhof R (1992) Relationship between wind speed and gas exchange over the ocean. J Geophys Res 97:7373–7382

    Article  Google Scholar 

  • Wanninkhof R, McGillis WR (1999) A cubic relationship between air–sea \(\text{ CO }_{2}\) exchange and wind speed. Geophys Res Lett 26(13):1889–1892

    Article  Google Scholar 

  • Wanninkhof R, Asher WE, Ho DT, Sweeney C, McGillis WR (2009) Advances in quantifying air–sea gas exchange and environmental forcing. Annu Rev Mar Sci 1:213–244

    Article  Google Scholar 

  • Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water-vapor transfer. Q J R Meteorol Soc 106(447):85–100

    Article  Google Scholar 

  • Weiss A, Kuss J, Peters G, Schneider B (2007) Evaluating transfer velocity–wind speed relationship using a long-term series of direct eddy correlation \(\text{ CO }_{2}\) flux measurements. J Mar Syst 66:130–139

    Article  Google Scholar 

  • Weiss RF (1974) Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar Chem 2:203–215

    Article  Google Scholar 

  • Wyngaard JC (1988) The effects of probe-induced flow distortion on atmospheric turbulence measurements: extension to scalars. J Atmos Sci 45(22):3400–3412

    Article  Google Scholar 

  • Zemmelink H, Slagter H, Slooten C, Snoek J, Heusinkveld B, Elbers J, Bink N, Klaassen W, Philippart C, Baar H (2009) Primary production and eddy correlation measurements of \(\text{ CO }_{2}\) exchange over an intertidal estuary. Geophys Res Lett 36:L19606

    Article  Google Scholar 

Download references

Acknowledgments

This work was part of a Ph.D. project supported by ECOCLIM, funded by The Danish Council for Strategic Research. We sincerely thank Søren William Lund and Kaj Morten Hildan for technical help in relation to mounting and maintenance of the experimental set-up and Risø DTU for making wave data available. Furthermore, we would like to thank the ECOCLIM and DEFROST Journal Club, Christina Levisen, Sara Pryor and Robert Peel for valuable comments on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Thorborg Mørk.

Appendix

Appendix

In the Advanced Mode of EddyPro 4.0.0 the settings shown in Table 5 are chosen using the listed methods.

Table 5 The chosen processing options and methods used in the calculation of \(\mathrm{CO}_{2}\) fluxes using EddyPro, version 4.0.0

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mørk, E.T., Sørensen, L.L., Jensen, B. et al. Air–Sea \(\mathrm{CO}_{2}\) Gas Transfer Velocity in a Shallow Estuary. Boundary-Layer Meteorol 151, 119–138 (2014). https://doi.org/10.1007/s10546-013-9869-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-013-9869-z

Keywords

Navigation