biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 58:71-79, 2014 | DOI: 10.1007/s10535-013-0362-9

Dynamics of heat-shock induced DNA damage and repair in senescent tobacco plants

P. Cvjetko1,*, B. Balen1, P. Peharec Štefanić1, L. Debogović1, M. Pavlica1, G. I. V. Klobučar2
1 Department of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
2 Department of Zoology, Faculty of Science, University of Zagreb, Zagreb, Croatia

Oxidative stress plays an important role in plant ageing and in response to different stresses. Oxidative DNA damage, unless repaired, may have detrimental consequences and increase genetic instability. Therefore, we determined the role of heat-shock induced oxidative stress on induction and repair of DNA damage in relation to oxidative stress tolerance in senescent tobacco plants. One-month-old (young) and three-month-old (senescent) plants were exposed to 42 °C for 2 and 4 h and left to recover at 26 °C for 24 and 72 h. The progression of senescence was characterized by the lower soluble protein and malondialdehyde content compared to young plants. Immediately after the heat shock, an increase in lipid peroxidation and guaiacol peroxidase activity, as well as DNA damage measured by the Comet assay were induced to higher extent in the young plants than in the senescent ones compared to their respective controls. Moreover, after 24-h recovery, the DNA damage further increased in the young plants whereas tendency of DNA repair was observed in the senescent plants. Upon 72-h recovery, no significant differences were noticed in all parameters studied (regardless of plant age) compared to the controls. The random amplified polymorphic DNA (RAPD) analysis confirmed genetic stability of the tobacco plants during the heat-shock exposures as well as the subsequent recovery periods.

Keywords: Comet assay; DNA polymorphism; oxidative stress; RAPD; temperature stress
Subjects: heat-shock; temperature - high; DNA damage; senescence; comet assay; DNA polymorphism; oxidative stress; tobacco; malondialdehyde; glutatione peroxidase

Received: February 22, 2013; Revised: April 12, 2013; Accepted: April 23, 2013; Published: March 1, 2014  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Cvjetko, P., Balen, B., Peharec Štefanić, P., Debogović, L., Pavlica, M., & Klobučar, G.I.V. (2014). Dynamics of heat-shock induced DNA damage and repair in senescent tobacco plants. Biologia plantarum58(1), 71-79. doi: 10.1007/s10535-013-0362-9
Download citation

References

  1. Abarca, D., Martin, M., Sabater, B.: Differential leaf stress responses in young and senescent plants. - Physiol. Plant. 113: 409-415, 2001. Go to original source...
  2. Ali, B.A., Hahn, E.J., Paek, K.Y.: Effects of temperature on oxidative stress defense systems, lipid peroxidation and lipoxygenase activity in Phalenopsis. - Plant Physiol. Biochem. 43: 213-223, 2005. Go to original source...
  3. Almeselmani, M., Deshmukh, P.S., Sairam, R.K., Kushwaha, S.R., Singh, T.P.: Protective role of antioxidant enzymes under high temperature stress. - Plant Sci. 171: 382-388, 2006. Go to original source...
  4. Asthir, B., Koundal, A., Bains, N.S.: Putrescine modulates antioxidant defense response in wheat under high temperature stress. - Biol. Plant. 56: 757-761, 2012. Go to original source...
  5. Atienzar, F.A., Evenden, A.J., Jha, A.N., Depledge, M.H.: Use of the random amplified polymorphic DNA (RAPD) for the detection of DNA damage and mutations: possible implication of confounding factors. - Biomarkers. 7: 94-101, 2002. Go to original source...
  6. Atienzar, F.A., Jha, A.N.: The random amplified polymorphic DNA (RAPD) assay and related techniques applied to genotoxicity and carcinogenesis studies: a critical review. - Mutat. Res. 613: 76-102, 2006. Go to original source...
  7. Behera, S.K., Nayak, L., Biswal, B.: Senescing leaves possess potential for stress adaptation: the developing leaves acclimated to high light exhibit increased tolerance to osmotic stress during senescence. - J. Plant Physiol. 160: 125-131, 2003. Go to original source...
  8. Bradford, M.M.: A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. - Anal. Biochem. 72: 248-254, 1976. Go to original source...
  9. Cadet, J., Douki, T., Ravanat, J.L.: Oxidatively generated base damage to cellular DNA. - Free Radicals Biol. Med. 49: 9-21, 2010. Go to original source...
  10. Chaitanya, K.V., Sundar, D., Masilamani, S., Ramachandra Reddy, A.: Variation in heat stress-induced antioxidant enzyme activities among three mulberry cultivars. - Plant Growth Regul. 36: 175-180, 2002. Go to original source...
  11. Chance, B., Maehly, A.C.: Assay of catalases and peroxidases. - In: Colowick, S.P., Kaplan, N.O. (ed.): Methods in Enzymology. Pp. 764-775. Academic Press, New York 1955. Go to original source...
  12. Chen, H., Yan, C., Jiang, X., Dai, Y.R.: Hyperthermia-induced apoptosis and the inhibition of DNA laddering by zinc supplementation and withdrawal of calcium and magnesium in suspension culture of tobacco cells. - Cell Mol. Life Sci. 55: 303-309, 1999. Go to original source...
  13. Dat, J., Van den Abeele, S., Vranova, E., Van Montagu, M., Inze, D., Van Breusegem, F.: Dual action of the active oxygen species during plant stress responses. - Cell Mol. Life Sci. 57: 779-795, 2000. Go to original source...
  14. Derocher, A.E., Helm, K.W., Lauzon, L.M., Vierling, E.: Expression of a conserved family of cytoplasmic low molecular weight heat shock proteins during heat stress and recovery. - Plant Physiol. 96: 1038-1046, 1991. Go to original source...
  15. Gechev, T., Willekens, H., Van Montagu, M., Inzé, D., Van Camp, W., Toneva, V., Minkov, I.: Different responses of tobacco antioxidant enzymes to light and chilling stress. - J. Plant Physiol. 160: 509-515, 2003. Go to original source...
  16. Gichner, T., Ptacek, O., Stavreva, D.A., Plewa, M.J.: Comparison of DNA damage in plants as measured by single cell gel electrophoresis and somatic leaf mutations induced by monofunctional alkylating agents. - Environ. Mol. Mutag. 33: 279-286, 1999. Go to original source...
  17. Gichner, T., Ptacek, O., Stavreva, D.A., Wagner, E.D., Plewa, M.J.: A comparison of DNA repair using the comet assay in tobacco seedlings after exposure to alkylating agents or ionizing radiation. - Mutat. Res. 470: 1-9, 2000. Go to original source...
  18. Gichner, T., Mukherjee, A., Velemínský, J.: DNA staining with the fluorochromes EtBr, DAPI and YOYO-1 in the comet assay with tobacco plants after treatment with ethyl methanesulphonate, hyperthermia and DNase-I. - Mutat. Res. 605: 17-21, 2006. Go to original source...
  19. Gong, H., Chen, G., Li, F., Wang, X., Hu, Y., Bi, Y.: Involvement of G6PDH in heat stress tolerance in the calli from Przewalskia tangutica and Nicotiana tabacum. - Biol. Plant. 56: 422-430, 2012. Go to original source...
  20. Gorinova, N., Nedkovska, M., Todorovska, E., Simova-Stoilova, L., Stoyanova, Z., Georgieva, K., Demirevska-Kepova, K., Atanassov, A., Herzig, R.: Improved phytoaccumulation of cadmium by genetically modified tobacco plants (Nicotiana tabacum L.). - Environ. Pollut. 145: 161-170, 2007. Go to original source...
  21. Gülen, H., Çetinkaya, C., Kadóğlu, M., Kesici, M., Cansev, A., Eriş, A.: Peroxidase activity and lipid peroxidation in strawberry (Fragaria × ananassa) plants under low temperature. - J. Biol. environ. Sci. 2: 95-100, 2008.
  22. Gülen, H., Eris, A.: Effect of heat stress on peroxidase activity and total protein content in strawberry plants. - Plant Sci. 166: 739-744, 2004. Go to original source...
  23. Hansen, J., Sato, M., Ruedy, R., Lo, K., Lea, D.W., Martin, M.E.: Global temperature change. - Proc. nat. Acad. Sci. USA 103: 14288-14293, 2006. Go to original source...
  24. Heath, R.L., Packer, L.: Photoperoxidation in isolated chloroplasts: kinetics and stoichiometry of fatty acid peroxidation. - Arch. Biochem. Biophys. 125: 189-198, 1968. Go to original source...
  25. Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. - Nature 227: 680-685, 1970. Go to original source...
  26. Lim, P.O., Kim, H.J., Nam, H.H.: Leaf senescence. - Annu. Rev. Plant. Biol. 58: 115-136, 2007. Go to original source...
  27. Luo, C., He, X.-H., Chen, H., Hu, Y., Ou, S.-J.: Molecular cloning and expression analysis of four actin genes (MiACT) from mango. - Biol. Plant. 57: 238-244, 2013. Go to original source...
  28. Ma, Y.H., Ma, F.W., Zhang, J.K., Li, M.J., Wang, Y.H., Liang, D.: Effects of high-temperature on activities and gene expression of enzymes involved in ascorbate-glutatione cycle in apple leaves. - Plant Sci. 175: 761-766, 2008. Go to original source...
  29. Madlung, A., Comai, L.: The effect of stress on genome regulation and structure. - Ann. Bot. 94: 481-495, 2004. Go to original source...
  30. Mancini, A., Buschini, A., Restivo, F.M., Rossi, C., Poli, P.: Oxidative stress as DNA damage in different transgenic tobacco plants. - Plant Sci. 170: 845-852, 2006. Go to original source...
  31. Martins, M., Sarmento, D., Oliveira, M.M.: Genetic stability of micropropagated almond plantlets, as assessed by RAPD and ISSR markers. - Plant Cell. Rep. 23: 492-496, 2004. Go to original source...
  32. Ohe, M., Rapolu, M., Mieda, T., Miyagawa, Y., Yabuta, Y., Yoshimura, K., Shigeoka, S.: Decline in leaf photooxidative-stress tolerance with age in tobacco. - Plant Sci. 168: 1487-1493, 2005. Go to original source...
  33. Park, S.M., Hong, C.B.: Class I small heat-shock protein gives thermotolerance in tobacco. - J. Plant Physiol. 159: 25-30, 2002. Go to original source...
  34. Peredo, E.L., Arroyo-Garcá, R., Revillaa, M.A.: Epigenetic changes detected in micropropagated hop plants. - J. Plant Physiol. 166: 1101-1111, 2009. Go to original source...
  35. Prochazkova, D., Sairam, R.K., Srivastava, G.C., Singh, D.V.: Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. - Plant Sci. 161: 765-771, 2001. Go to original source...
  36. Roldán-Arjona, T., Ariza, R.R.: Repair and tolerance of oxidative DNA damage in plants. - Mutat. Res. 681: 169-179, 2009. Go to original source...
  37. Rousset, N., Keminon, E., Eleouet, S., Le Neel, T., Auget, J.L., Vonarx, V., Carre, J., Lajat, Y., Patrice, T.: Use of alkaline comet assay to assess DNA repair after m-THPCPDT. - J. Photochem. Photobiol. B. 56: 118-31, 2000. Go to original source...
  38. Šrut, M., Štambuk, A., Klobučar G.I.V.: What is Comet assay not telling us: AFLP reveals wider aspects of genotoxicity.- Toxicol. Vitro 27: 1226-1232, 2013. Go to original source...
  39. Tao, P., Liu, L., Wang, J.B.: Characterization of eight cytosolic sHSP genes and their expression in Capsella bursa-pastoris. - Biol. Plant. 56: 648-656, 2012. Go to original source...
  40. Timperio, A.T., Egidi, M.G., Zolla, L.: Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). - J. Proteomics. 71: 391-411, 2008. Go to original source...
  41. Tuteja, N., Ahmada, P., Panda B.B., Tuteja, R.: Genotoxic stress in plants: shedding light on DNA damage, repair and DNA repair helicases. - Mutat. Res. 681:134-149, 2009. Go to original source...
  42. Wahid, A., Gelani, S., Ashrafa, M., Foolad, M.R.: Heat tolerance in plants: an overview. - Environ. exp. Bot. 61: 199-223, 2007. Go to original source...
  43. Yin, H., Chen, Q., Yi, M.: Effects of short-term heat stress on oxidative damage and responses of antioxidant system in Lilium longiflorum. - Plant Growth Regul. 54: 45-54, 2008. Go to original source...
  44. Yoshida, S.: Molecular regulation of leaf senescence. - Curr. Opin. Plant. Biol. 6: 79-84, 2003. Go to original source...