biologia plantarum

International journal on Plant Life established by Bohumil Nìmec in 1959

Biologia plantarum 52:314-320, 2008 | DOI: 10.1007/s10535-008-0065-9

Glutathione and phytochelatin contents in tomato plants exposed to cadmium

W. Ben Ammar1,*, C. Mediouni1, B. Tray1, M. H. Ghorbel1, F. Jemal1
1 Faculté des Sciences de Tunis, Campus Universitaire, Tunis, Tunisia

The effect of cadmium on growth and contents of glutathione (GSH) and phytochelatins (PCs) were investigated in roots and leaves of tomato plants (Lycopersicon esculentum Mill. cv. 63/5 F1). The accumulation of Cd increased with external Cd concentrations and was considerably higher in roots than in leaves. Dry mass production decreased under Cd treatment especially in leaves. In both roots and leaves, exposure to Cd caused an appreciable decline in GSH contents and increase in PCs synthesis proportional to Cd concentrations in the growth medium. At the same Cd concentration, PCs production was higher in roots than in leaves. The implication of glutathione in PC synthesis was strongly suggested by the use of buthionine sulfoximine (BSO). The major fraction of Cd accumulated by tomato roots was in the form of a Cd-PCs complex.

Keywords: buthionine sulfoximine; complex Cd-PC; Lycopersicon esculentum
Subjects: glutathione reductase; heavy metals; Lycopersicon esculentum; phytochelatins; thiobarbituric acid; tomato

Received: September 20, 2006; Accepted: March 9, 2007; Published: June 1, 2008  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Ben Ammar, W., Mediouni, C., Tray, B., Ghorbel, M.H., & Jemal, F. (2008). Glutathione and phytochelatin contents in tomato plants exposed to cadmium. Biologia plantarum52(2), 314-320. doi: 10.1007/s10535-008-0065-9
Download citation

References

  1. Agrawal, V., Sharma, K.: Phytotoxic effects of Cu, Zn, Cd and Pb on in vitro regeneration and concomitant protein changes in Holarrhena antidysenterica.-Biol. Plant. 50: 307-310, 2006. Go to original source...
  2. Alia, K.V.S.K., Prasad, P., Pardha Saradhi, P.: Effect of zinc on free radicals and proline in Brassica and Cajanus.-Phytochemistry 42: 45-47, 1995. Go to original source...
  3. Anderson, M.E.: Determination of glutathione and glutathione disulfide in biological samples.-Methods Enzymol. 113: 548-555, 1985. Go to original source...
  4. Arbona, V., Flors, V., Garcia-Agustin, P., Gomez-Cadenas, A.: Enzymatic and non-enzymatic antioxidant responses of Carrizo citrange, salt-sensitive citrus rootstock, to different levels of salinity.-Plant Cell Physiol. 44: 388-394, 2003. Go to original source...
  5. Ben Ammar, W., Nouairi, I., Tray, B., Zarrouk, M., Jemal, F., Ghorbal, M.H.: Effets du cadmium sur l'accumulation ionique et les teneurs en lipides dans les feuilles de tomate (Lycopersicon esculentum).-J. Soc. Biol. 199: 157-163, 2005. Go to original source...
  6. Buege, A.J., Aust, S.D.: Microsomal lipid peroxidation,-Method Enzymol. 52: 302-310, 1972. Go to original source...
  7. Clemens, S.: Molecular mechanisms of plant metal tolerance and homeostasis.-Plant 212: 475-486, 2001. Go to original source...
  8. Clemens, S.: Evolution and function of phytochelatin synthase.-J. Plant Physiol. 163: 319-332, 2006. Go to original source...
  9. Cobbett, C.S.: Phytochelatin biosynthesis and function in heavy-metal detoxification.-Curr. Opin. Plant Biol. 3: 211-216, 2000. Go to original source...
  10. De Pinto, M.C., Tommasi, F., De Gara, L.: Enzymes of the ascorbate biosynthesis and ascorbate-glutathione cycle in cultured cells of tobacco bright yellow (BY-2 line).-Plant Physiol. Biochem. 38: 541-550, 2000. Go to original source...
  11. De Vos, C.H., Marjolein, R.V.J., Vooijs, R., Schat, H.: Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus.-Plant Physiol. 98: 853-858, 1992. Go to original source...
  12. Draziĉ, G., Mihailoviĉ, N., Lojiĉ, M.: Cadmium accumulation in Medicago sativa seedlings treated with salicylic acid.-Biol. Plant. 50: 239-244, 2006. Go to original source...
  13. Ellman, G.L.: Tissue sulfhydryl groups.-Arch. Biochem. Biophys. 82: 70-77, 1959. Go to original source...
  14. Gouia, H., Suzuki, A., Brultfert, J., Ghorbal, M.H.: Effects of cadmium on the co-ordination of nitrogen and carbon metabolism in bean seedlings.-J. Plant Physiol. 160: 367-376, 2003. Go to original source...
  15. Grill, E., Winnacker, E., Zenk, M.H.: Phytochelatins the principal heavy-metal complexing peptides of higher plants.-Science 230: 674-676, 1985. Go to original source...
  16. Ha, S.B., Smith, A.P., Howden, R., Dietrich, W.H., Bugg, S., O'Connell, M.J., Goldsbrough, P.B., Cobbet, C.S.: Phytochelatin synthase genes from Arabidopsis and yeast Schizosaccharomyces pombe.-Plant Cell. 11: 1153-1164, 1999. Go to original source...
  17. Hall J.L.: Cellular mechanisms for heavy metal detoxification and tolerance.-J. exp. Bot. 53: 1-11. 2002. Go to original source...
  18. Inouhe, M.: Phytochelatins.-Braz. J. Plant Physiol. 17: 65-78, 2005. Go to original source...
  19. Jemal, F., Didierjean, L., Ghrir, R., Ghorbal, M.H., Burkard, G.: Characterization of cadmium binding peptides from pepper (Capsicum annuum).-Plant Sci. 137: 143-154, 1998. Go to original source...
  20. Krupa, Z.., Öquist, G., Huner, N.P.A.: The effects of cadmium on photosynthesis of Phaseolus vulgaris. A fluorescence analysis.-Physiol. Plant. 88: 626-630, 1993. Go to original source...
  21. Li, Y., Parkash, O.D., Laura, C., David, L., Alice, C., Julian, I.S., Rebecca, S.B., Richard, B.M.: Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity.-Plant Cell Physiol. 45: 1787-1797, 2004. Go to original source...
  22. Meneguzzo, S., Navari-Izzo, F., Izzo, R.: Antioxidant responses of shoots and roots of wheat to increasing NaCl concentrations.-J. Plant. Physiol. 155: 274-280, 1999. Go to original source...
  23. Nocito, F., Pirovano, L., Cocucci, M., Sacchi, A.: Cadmium-induced sulfate uptake in maize roots.-Plant Physiol. 129: 1872-1879, 2002. Go to original source...
  24. Noctor, G., Foyer, C.H.: Ascorbate and glutathione: keeping active oxygen under control.-Annu Rev. Plant Physiol. Plant mol. Biol. 49: 249-279, 1998. Go to original source...
  25. Noctor, G., Gomez, L., Vanacker, H., Foyer, C.H.: Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling.-J. exp. Bot. 53: 1283-1304, 2002. Go to original source...
  26. Nouairi, I., Ben Ammar, W., Ben Youssef, N., Ben Miled Daoud, D., Ghorbal, M.H., Zarrouk, M.: Comparative study of cadmium effects on membrane lipid composition of Brassica juncea and Brassica napus leaves.-Plant Sci. 170: 511-519, 2005. Go to original source...
  27. Pietrini, F., Iannelli, M.A., Pasqualini, S., Massacci, A.: Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis.-Plant Physiol. 133: 829-837, 2003. Go to original source...
  28. Rauser, W.E.: Phytochelatins and related peptides. Structure, biosynthesis and function.-Plant Physiol. 109: 1141-1149, 1995. Go to original source...
  29. Rea, P.A., Li, Z.S., Lu, Y.P., Drozodowicz, Y.M., Martinoia, E.: From vacuolar GS-X pumps to multispecific ABC transporters.-Annu. Rev. Plant Physiol. Plant mol. Biol. 49: 727-760, 1998. Go to original source...
  30. Rennenberg, H.: Glutathione metabolism and possible biological roles in higher plants.-Phytochemistry 21: 2771-2781, 1982. Go to original source...
  31. Sandalio, L.M., Dalurzo, H.C., Gomez, M., Romero-Puertas, M.C., Del Rio, L.A.: Cadmium induced changes in the growth and oxidative metabolism of pea plants.-J. exp. Bot. 152: 2115-2126, 2001. Go to original source...
  32. Scarano, G., Morelli, E.: Characterization of cadmium and lead-phytochelatins complexes formed in marine microalgae in response to metal exposure.-BioMetals 15: 145-151, 2002. Go to original source...
  33. Scebba, F., Arduini, I., Ercoli, L., Sebastiani, L.: Cadmium effects on growth and antioxidant enzymes activities in Miscanthus sinensis.-Biol. Plant. 50: 688-692, 2006. Go to original source...
  34. Xiang, C., Werner, B.L., Christensen, E.M., Oliver, D.J.: The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels.-Plant Physiol. 126: 564-574, 2001. Go to original source...
  35. Yu, C..W., Murphy, T.M., Sung, W.W., Lin, C.H.: H2O2 treatment induces glutathione accumulation and chilling tolerance in mung bean.-Funct. Plant Biol. 29: 1081-1087, 2002. Go to original source...
  36. Yurekli, F., Unyayar, A., Porgali, Z.B., Mazmanci, M.A.: Effects of cadmium exposure on phytochelatin and the synthesis of abscisic acid in Funalia trogii.-Eng. Life Sci. 4: 478-380, 2004. Go to original source...
  37. Zhu, O.Y.L., Pilon-Smits, E.A.H., Jouanin, l., Terry, N.: Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance.-Plant Physiol. 119: 73-79, 1999. Go to original source...