Skip to main content
Log in

Transition metal homeostasis: from yeast to human disease

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Transition metal ions are essential nutrients to all forms of life. Iron, copper, zinc, manganese, cobalt and nickel all have unique chemical and physical properties that make them attractive molecules for use in biological systems. Many of these same properties that allow these metals to provide essential biochemical activities and structural motifs to a multitude of proteins including enzymes and other cellular constituents also lead to a potential for cytotoxicity. Organisms have been required to evolve a number of systems for the efficient uptake, intracellular transport, protein loading and storage of metal ions to ensure that the needs of the cells can be met while minimizing the associated toxic effects. Disruptions in the cellular systems for handling transition metals are observed as a number of diseases ranging from hemochromatosis and anemias to neurodegenerative disorders including Alzheimer’s and Parkinson’s disease. The yeast Saccharomyces cerevisiae has proved useful as a model organism for the investigation of these processes and many of the genes and biological systems that function in yeast metal homeostasis are conserved throughout eukaryotes to humans. This review focuses on the biological roles of iron, copper, zinc, manganese, nickel and cobalt, the homeostatic mechanisms that function in S. cerevisiae and the human diseases in which these metals have been implicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aisen P, Enns C et al (2001) Chemistry and biology of eukaryotic iron metabolism. Int J Biochem Cell Biol 33(10):940–959

    PubMed  CAS  Google Scholar 

  • Ala A, Walker AP et al (2007) Wilson’s disease. Lancet 369(9559):397–408

    PubMed  CAS  Google Scholar 

  • Ali SF, Duhart HM et al (1995) Manganese-induced reactive oxygen species: comparison between Mn+2 and Mn+3. Neurodegeneration 4(3):329–334

    PubMed  CAS  Google Scholar 

  • Altamura S, Muckenthaler MU (2009) Iron toxicity in diseases of aging: Alzheimer’s disease, Parkinson’s disease and atherosclerosis. J Alzheimers Dis 16(4):879–895

    PubMed  Google Scholar 

  • Amalinei C, Caruntu ID et al (2007) Biology of metalloproteinases. Rom J Morphol Embryol 48(4):323–334

    PubMed  Google Scholar 

  • Andrews NC (1999) Disorders of iron metabolism. N Engl J Med 341(26):1986–1995

    PubMed  CAS  Google Scholar 

  • Andrews NC, Schmidt PJ (2007) Iron homeostasis. Annu Rev Physiol 69:69–85

    PubMed  CAS  Google Scholar 

  • Arita A, Zhou X et al (2009) A genome-wide deletion mutant screen identifies pathways affected by nickel sulfate in Saccharomyces cerevisiae. BMC Genomics 10:524

    PubMed  Google Scholar 

  • Askwith C, Eide D et al (1994) The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell 76(2):403–410

    PubMed  CAS  Google Scholar 

  • Atwood CS, Obrenovich ME et al (2003) Amyloid-beta: a chameleon walking in two worlds: a review of the trophic and toxic properties of amyloid-beta. Brain Res Brain Res Rev 43(1):1–16

    PubMed  CAS  Google Scholar 

  • Babcock M, de Silva D et al (1997) Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin. Science 276(5319):1709–1712

    PubMed  CAS  Google Scholar 

  • Banerjee R, Ragsdale SW (2003) The many faces of vitamin B12: catalysis by cobalamin-dependent enzymes. Annu Rev Biochem 72:209–247

    PubMed  CAS  Google Scholar 

  • Beinert H (2000) Iron-sulfur proteins: ancient structures, still full of surprises. J Biol Inorg Chem 5(1):2–15

    PubMed  CAS  Google Scholar 

  • Bermingham-McDonogh O, Gralla EB et al (1988) The copper, zinc-superoxide dismutase gene of Saccharomyces cerevisiae: cloning, sequencing, and biological activity. Proc Natl Acad Sci USA 85(13):4789–4793

    PubMed  CAS  Google Scholar 

  • Berthelet S, Usher J et al (2010) Functional genomics analysis of the Saccharomyces cerevisiae iron responsive transcription factor Aft1 reveals iron-independent functions. Genetics 185(3):1111–1128

    PubMed  CAS  Google Scholar 

  • Bird A, Evans-Galea MV et al (2000) Mapping the DNA binding domain of the Zap1 zinc-responsive transcriptional activator. J Biol Chem 275(21):16160–16166

    PubMed  CAS  Google Scholar 

  • Bird AJ, McCall K et al (2003) Zinc fingers can act as Zn2+ sensors to regulate transcriptional activation domain function. EMBO J 22(19):5137–5146

    PubMed  CAS  Google Scholar 

  • Bird AJ, Blankman E et al (2004) The Zap1 transcriptional activator also acts as a repressor by binding downstream of the TATA box in ZRT2. EMBO J 23(5):1123–1132

    PubMed  CAS  Google Scholar 

  • Bleackley MR, Wong AY et al (2009) Blood iron homeostasis: newly discovered proteins and iron imbalance. Transfus Med Rev 23(2):103–123

    PubMed  Google Scholar 

  • Bleackley MR, Young BP et al (2011) High density array screening to identify the genetic requirements for transition metal tolerance in Saccharomyces cerevisiae. Metallomics 3(2):195–205

    PubMed  CAS  Google Scholar 

  • Blindauer CA, Leszczyszyn OI (2010) Metallothioneins: unparalleled diversity in structures and functions for metal ion homeostasis and more. Nat Prod Rep 27(5):720–741

    PubMed  CAS  Google Scholar 

  • Bode HP, Dumschat M et al (1995) Iron sequestration by the yeast vacuole. A study with vacuolar mutants of Saccharomyces cerevisiae. Eur J Biochem 228(2):337–342

    PubMed  CAS  Google Scholar 

  • Bonaccorsi di Patti MC, Miele R et al (2005) The yeast multicopper oxidase Fet3p and the iron permease Ftr1p physically interact. Biochem Biophys Res Commun 333(2):432–437

    PubMed  CAS  Google Scholar 

  • Borden KL, Freemont PS (1996) The RING finger domain: a recent example of a sequence-structure family. Curr Opin Struct Biol 6(3):395–401

    PubMed  CAS  Google Scholar 

  • Bovallius A, Zacharias B (1971) Variations in the metal content of some commercial media and their effect on microbial growth. Appl Microbiol 22(3):260–262

    PubMed  CAS  Google Scholar 

  • Braun NA, Morgan B et al (2010) The yeast CLC protein counteracts vesicular acidification during iron starvation. J Cell Sci 123(Pt 13):2342–2350

    PubMed  CAS  Google Scholar 

  • Bruijnincx PC, van Koten G et al (2008) Mononuclear non-heme iron enzymes with the 2-His-1-carboxylate facial triad: recent developments in enzymology and modeling studies. Chem Soc Rev 37(12):2716–2744

    PubMed  CAS  Google Scholar 

  • Bull PC, Thomas GR et al (1993) The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat Genet 5(4):327–337

    PubMed  CAS  Google Scholar 

  • Bulteau AL, O’Neill HA et al (2004) Frataxin acts as an iron chaperone protein to modulate mitochondrial aconitase activity. Science 305(5681):242–245

    PubMed  CAS  Google Scholar 

  • Bun-Ya M, Nishimura M et al (1991) The PHO84 gene of Saccharomyces cerevisiae encodes an inorganic phosphate transporter. Mol Cell Biol 11(6):3229–3238

    PubMed  CAS  Google Scholar 

  • Camaschella C (2009) Hereditary sideroblastic anemias: pathophysiology, diagnosis, and treatment. Semin Hematol 46(4):371–377

    PubMed  CAS  Google Scholar 

  • Campuzano V, Montermini L et al (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271(5254):1423–1427

    PubMed  CAS  Google Scholar 

  • Chen XZ, Peng JB et al (1999) Yeast SMF1 mediates H(+)-coupled iron uptake with concomitant uncoupled cation currents. J Biol Chem 274(49):35089–35094

    PubMed  CAS  Google Scholar 

  • Chen OS, Crisp RJ et al (2004) Transcription of the yeast iron regulon does not respond directly to iron but rather to iron-sulfur cluster biosynthesis. J Biol Chem 279(28):29513–29518

    PubMed  CAS  Google Scholar 

  • Choi CJ, Anantharam V et al (2007) Normal cellular prion protein protects against manganese-induced oxidative stress and apoptotic cell death. Toxicol Sci 98(2):495–509

    PubMed  CAS  Google Scholar 

  • Cohen A, Nelson H et al (2000) The family of SMF metal ion transporters in yeast cells. J Biol Chem 275(43):33388–33394

    PubMed  CAS  Google Scholar 

  • Conklin DS, McMaster JA et al (1992) COT1, a gene involved in cobalt accumulation in Saccharomyces cerevisiae. Mol Cell Biol 12(9):3678–3688

    PubMed  CAS  Google Scholar 

  • Cooper CE, Nicholls P et al (1991) Cytochrome c oxidase: structure, function, and membrane topology of the polypeptide subunits. Biochem Cell Biol 69(9):586–607

    PubMed  CAS  Google Scholar 

  • Courel M, Lallet S et al (2005) Direct activation of genes involved in intracellular iron use by the yeast iron-responsive transcription factor Aft2 without its paralog Aft1. Mol Cell Biol 25(15):6760–6771

    PubMed  CAS  Google Scholar 

  • Crichton RR, Pierre JL (2001) Old iron, young copper: from Mars to Venus. Biometals 14(2):99–112

    PubMed  CAS  Google Scholar 

  • Crow JP, Beckman JS et al (1995) Sensitivity of the essential zinc-thiolate moiety of yeast alcohol dehydrogenase to hypochlorite and peroxynitrite. Biochemistry 34(11):3544–3552

    PubMed  CAS  Google Scholar 

  • Cuajungco MP, Lees GJ (1997) Zinc and Alzheimer’s disease: is there a direct link? Brain Res Brain Res Rev 23(3):219–236

    PubMed  CAS  Google Scholar 

  • Cuajungco MP, Goldstein LE et al (2000) Evidence that the beta-amyloid plaques of Alzheimer’s disease represent the redox-silencing and entombment of abeta by zinc. J Biol Chem 275(26):19439–19442

    PubMed  CAS  Google Scholar 

  • Culotta V (2010) Cell biology of copper. J Biol Inorg Chem 15(1):1–2

    PubMed  CAS  Google Scholar 

  • Culotta VC, Yang M et al (2005) Manganese transport and trafficking: lessons learned from Saccharomyces cerevisiae. Eukaryot Cell 4(7):1159–1165

    PubMed  CAS  Google Scholar 

  • Curtis AR, Fey C et al (2001) Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease. Nat Genet 28(4):350–354

    PubMed  CAS  Google Scholar 

  • Dancis A, Haile D et al (1994a) The Saccharomyces cerevisiae copper transport protein (Ctr1p). Biochemical characterization, regulation by copper, and physiologic role in copper uptake. J Biol Chem 269(41):25660–25667

    PubMed  CAS  Google Scholar 

  • Dancis A, Yuan DS et al (1994b) Molecular characterization of a copper transport protein in S. cerevisiae: an unexpected role for copper in iron transport. Cell 76(2):393–402

    PubMed  CAS  Google Scholar 

  • Davis-Kaplan SR, Askwith CC et al (1998) Chloride is an allosteric effector of copper assembly for the yeast multicopper oxidase Fet3p: an unexpected role for intracellular chloride channels. Proc Natl Acad Sci USA 95(23):13641–13645

    PubMed  CAS  Google Scholar 

  • de Bie P, Muller P et al (2007) Molecular pathogenesis of Wilson and Menkes disease: correlation of mutations with molecular defects and disease phenotypes. J Med Genet 44(11):673–688

    PubMed  Google Scholar 

  • De Boeck M, Kirsch-Volders M et al (2003) Cobalt and antimony: genotoxicity and carcinogenicity. Mutat Res 533(1–2):135–152

    PubMed  Google Scholar 

  • Deng HX, Hentati A et al (1993) Amyotrophic lateral sclerosis and structural defects in Cu, Zn superoxide dismutase. Science 261(5124):1047–1051

    PubMed  CAS  Google Scholar 

  • Desai V, Kaler SG (2008) Role of copper in human neurological disorders. Am J Clin Nutr 88(3):855S–858S

    PubMed  CAS  Google Scholar 

  • Devireddy LR, Hart DO et al (2010) A mammalian siderophore synthesized by an enzyme with a bacterial homolog involved in enterobactin production. Cell 141(6):1006–1017

    PubMed  CAS  Google Scholar 

  • Dexter DT, Carayon A et al (1991) Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain 114(Pt 4):1953–1975

    PubMed  Google Scholar 

  • Dingwall C (2007) A copper-binding site in the cytoplasmic domain of BACE1 identifies a possible link to metal homoeostasis and oxidative stress in Alzheimer’s disease. Biochem Soc Trans 35(Pt 3):571–573

    PubMed  CAS  Google Scholar 

  • Dix DR, Bridgham JT et al (1994) The FET4 gene encodes the low affinity Fe(II) transport protein of Saccharomyces cerevisiae. J Biol Chem 269(42):26092–26099

    PubMed  CAS  Google Scholar 

  • Dix D, Bridgham J et al (1997) Characterization of the FET4 protein of yeast. Evidence for a direct role in the transport of iron. J Biol Chem 272(18):11770–11777

    PubMed  CAS  Google Scholar 

  • Dujon B (1996) The yeast genome project: what did we learn? Trends Genet 12(7):263–270

    PubMed  CAS  Google Scholar 

  • Durai S, Mani M et al (2005) Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res 33(18):5978–5990

    PubMed  CAS  Google Scholar 

  • Durr G, Strayle J et al (1998) The medial-Golgi ion pump Pmr1 supplies the yeast secretory pathway with Ca2+ and Mn2+ required for glycosylation, sorting, and endoplasmic reticulum-associated protein degradation. Mol Biol Cell 9(5):1149–1162

    PubMed  CAS  Google Scholar 

  • Eide DJ (2003) Multiple regulatory mechanisms maintain zinc homeostasis in Saccharomyces cerevisiae. J Nutr 133(5 Suppl 1):1532S–1535S

    PubMed  CAS  Google Scholar 

  • Eide DJ (2004) The SLC39 family of metal ion transporters. Pflugers Arch 447(5):796–800

    PubMed  CAS  Google Scholar 

  • Eide DJ (2006) Zinc transporters and the cellular trafficking of zinc. Biochim Biophys Acta 1763(7):711–722

    PubMed  CAS  Google Scholar 

  • Eide DJ (2009) Homeostatic and adaptive responses to zinc deficiency in Saccharomyces cerevisiae. J Biol Chem 284(28):18565–18569

    PubMed  CAS  Google Scholar 

  • Eklund H, Uhlin U et al (2001) Structure and function of the radical enzyme ribonucleotide reductase. Prog Biophys Mol Biol 77(3):177–268

    PubMed  CAS  Google Scholar 

  • Emdin SO, Dodson GG et al (1980) Role of zinc in insulin biosynthesis. Some possible zinc-insulin interactions in the pancreatic B-cell. Diabetologia 19(3):174–182

    PubMed  CAS  Google Scholar 

  • Eng BH, Guerinot ML et al (1998) Sequence analyses and phylogenetic characterization of the ZIP family of metal ion transport proteins. J Membr Biol 166(1):1–7

    PubMed  CAS  Google Scholar 

  • Ferenci P (2006) Regional distribution of mutations of the ATP7B gene in patients with Wilson disease: impact on genetic testing. Hum Genet 120(2):151–159

    PubMed  CAS  Google Scholar 

  • Ferreira GC, Franco R et al (1995) Structure and function of ferrochelatase. J Bioenerg Biomembr 27(2):221–229

    PubMed  CAS  Google Scholar 

  • Fischer Walker CL, Ezzati M et al (2009) Global and regional child mortality and burden of disease attributable to zinc deficiency. Eur J Clin Nutr 63(5):591–597

    PubMed  CAS  Google Scholar 

  • Fox JH, Kama JA et al (2007) Mechanisms of copper ion mediated Huntington’s disease progression. PLoS One 2(3):e334

    PubMed  Google Scholar 

  • Fraker PJ, Haas SM et al (1977) Effect of zinc deficiency on the immune response of the young adult A/J mouse. J Nutr 107(10):1889–1895

    PubMed  CAS  Google Scholar 

  • Fraker PJ, DePasquale-Jardieu P et al (1978) Regeneration of T-cell helper function in zinc-deficient adult mice. Proc Natl Acad Sci USA 75(11):5660–5664

    PubMed  CAS  Google Scholar 

  • Frausto da Silva JJR, Williams RJP (2001a) Copper: extracytoplasmic oxidases and matrix formation. In: Frausto da Silva JJR, Williams RJP (eds) The biological chemistry of the elements, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Frausto da Silva JJR, Williams RJP (2001b) Manganese: dioxygen evolution and glycosylation. In: Frausto da Silva JJR, Williams RJP (eds) The biological chemistry of the elements, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Frausto da Silva JJR, Williams RJP (2001c) Nickel and cobalt: remnants of early life? In: Frausto da Silva JJR, Williams RJP (eds) The biological chemistry of the elements, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Frei R, Gaucher C et al (2009) Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature 461(7261):250–253

    PubMed  CAS  Google Scholar 

  • Friedlich AL, Tanzi RE et al (2007) The 5′-untranslated region of Parkinson’s disease alpha-synuclein messengerRNA contains a predicted iron responsive element. Mol Psychiatry 12(3):222–223

    PubMed  CAS  Google Scholar 

  • Fu D, Beeler TJ et al (1995) Sequence, mapping and disruption of CCC2, a gene that cross-complements the Ca(2+)-sensitive phenotype of csg1 mutants and encodes a P-type ATPase belonging to the Cu(2+)-ATPase subfamily. Yeast 11(3):283–292

    PubMed  CAS  Google Scholar 

  • Geier BM, Schagger H et al (1995) Kinetic properties and ligand binding of the eleven-subunit cytochrome-c oxidase from Saccharomyces cerevisiae isolated with a novel large-scale purification method. Eur J Biochem 227(1–2):296–302

    PubMed  CAS  Google Scholar 

  • Georgatsou E, Alexandraki D (1994) Two distinctly regulated genes are required for ferric reduction, the first step of iron uptake in Saccharomyces cerevisiae. Mol Cell Biol 14(5):3065–3073

    PubMed  CAS  Google Scholar 

  • Gerber J, Muhlenhoff U et al (2003) An interaction between frataxin and Isu1/Nfs1 that is crucial for Fe/S cluster synthesis on Isu1. EMBO Rep 4(9):906–911

    PubMed  CAS  Google Scholar 

  • Giaever G, Chu AM et al (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387–391

    PubMed  CAS  Google Scholar 

  • Gilman JP (1962) Metal carcinogenesis. II. A study on the carcinogenic activity of cobalt, copper, iron, and nickel compounds. Cancer Res 22:158–162

    PubMed  CAS  Google Scholar 

  • Gitan RS, Luo H et al (1998) Zinc-induced inactivation of the yeast ZRT1 zinc transporter occurs through endocytosis and vacuolar degradation. J Biol Chem 273(44):28617–28624

    PubMed  CAS  Google Scholar 

  • Goffeau A, Barrell BG et al (1996) Life with 6000 genes. Science 274(5287):546, 563–567

    Google Scholar 

  • Gola S, Martin R et al (2003) New modules for PCR-based gene targeting in Candida albicans: rapid and efficient gene targeting using 100 bp of flanking homology region. Yeast 20(16):1339–1347

    PubMed  CAS  Google Scholar 

  • Graham RK, Deng Y et al (2006) Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin. Cell 125(6):1179–1191

    PubMed  CAS  Google Scholar 

  • Guldener U, Munsterkotter M et al (2005) CYGD: the comprehensive yeast genome database. Nucleic Acids Res 33(Database issue):D364–D368

    Google Scholar 

  • Gurney ME, Pu H et al (1994) Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264(5166):1772–1775

    PubMed  CAS  Google Scholar 

  • Halsted JA, Ronaghy HA et al (1972) Zinc deficiency in man. The Shiraz experiment. Am J Med 53(3):277–284

    PubMed  CAS  Google Scholar 

  • Hambidge KM, Krebs NF (2007) Zinc deficiency: a special challenge. J Nutr 137(4):1101–1105

    PubMed  CAS  Google Scholar 

  • Hardy G (2009) Manganese in parenteral nutrition: who, when, and why should we supplement? Gastroenterology 137(5 Suppl):S29–S35

    PubMed  CAS  Google Scholar 

  • Harris WR (2002) Molecular and cellular iron transport. New York, Marcel Dekker Inc

    Google Scholar 

  • Harris ZL, Klomp LW et al (1998) Aceruloplasminemia: an inherited neurodegenerative disease with impairment of iron homeostasis. Am J Clin Nutr 67(5 Suppl):972S–977S

    PubMed  CAS  Google Scholar 

  • Harrison MD, Jones CE et al (1999) Copper chaperones: function, structure and copper-binding properties. J Biol Inorg Chem 4(2):145–153

    PubMed  CAS  Google Scholar 

  • Hassett R, Dix DR et al (2000) The Fe(II) permease Fet4p functions as a low affinity copper transporter and supports normal copper trafficking in Saccharomyces cerevisiae. Biochem J 351(Pt 2):477–484

    PubMed  CAS  Google Scholar 

  • Hengstler JG, Bolm-Audorff U et al (2003) Occupational exposure to heavy metals: DNA damage induction and DNA repair inhibition prove co-exposures to cadmium, cobalt and lead as more dangerous than hitherto expected. Carcinogenesis 24(1):63–73

    PubMed  CAS  Google Scholar 

  • Herbig A, Bird AJ et al (2005) Zap1 activation domain 1 and its role in controlling gene expression in response to cellular zinc status. Mol Microbiol 57(3):834–846

    PubMed  CAS  Google Scholar 

  • Hooper NM (1994) Families of zinc metalloproteases. FEBS Lett 354(1):1–6

    PubMed  CAS  Google Scholar 

  • Horng YC, Cobine PA et al (2004) Specific copper transfer from the Cox17 metallochaperone to both Sco1 and Cox11 in the assembly of yeast cytochrome C oxidase. J Biol Chem 279(34):35334–35340

    PubMed  CAS  Google Scholar 

  • Horsburgh MJ, Wharton SJ et al (2002) Manganese: elemental defence for a life with oxygen. Trends Microbiol 10(11):496–501

    PubMed  CAS  Google Scholar 

  • Howitt J, Putz U et al (2009) Divalent metal transporter 1 (DMT1) regulation by Ndfip1 prevents metal toxicity in human neurons. Proc Natl Acad Sci USA 106(36):15489–15494

    PubMed  CAS  Google Scholar 

  • Hu Z, Bonifas JM et al (2000) Mutations in ATP2C1, encoding a calcium pump, cause Hailey-Hailey disease. Nat Genet 24(1):61–65

    PubMed  CAS  Google Scholar 

  • Iolascon A, De Falco L et al (2009) Molecular basis of inherited microcytic anemia due to defects in iron acquisition or heme synthesis. Haematologica 94(3):395–408

    PubMed  CAS  Google Scholar 

  • Irazusta V, Cabiscol E et al (2006) Manganese is the link between frataxin and iron-sulfur deficiency in the yeast model of Friedreich ataxia. J Biol Chem 281(18):12227–12232

    PubMed  CAS  Google Scholar 

  • Jensen LT, Ajua-Alemanji M et al (2003) The Saccharomyces cerevisiae high affinity phosphate transporter encoded by PHO84 also functions in manganese homeostasis. J Biol Chem 278(43):42036–42040

    PubMed  CAS  Google Scholar 

  • Jensen LT, Carroll MC et al (2009) Down-regulation of a manganese transporter in the face of metal toxicity. Mol Biol Cell 20(12):2810–2819

    PubMed  CAS  Google Scholar 

  • Jo WJ, Loguinov A et al (2008) Identification of genes involved in the toxic response of Saccharomyces cerevisiae against iron and copper overload by parallel analysis of deletion mutants. Toxicol Sci 101(1):140–151

    PubMed  CAS  Google Scholar 

  • Joho M, Tarumi K et al (1991) Co2+ and Ni2+ resistance in Saccharomyces cerevisiae associated with a reduction in the accumulation of Mg2+. Microbios 67(272–273):177–186

    PubMed  CAS  Google Scholar 

  • Joho M, Inouhe M et al (1995) Nickel resistance mechanisms in yeasts and other fungi. J Ind Microbiol 14(2):164–168

    PubMed  CAS  Google Scholar 

  • Kaluarachchi H, Chan Chung KC et al (2010) Microbial nickel proteins. Nat Prod Rep 27(5):681–694

    PubMed  CAS  Google Scholar 

  • Kasprzak KS, Sunderman FW Jr et al (2003) Nickel carcinogenesis. Mutat Res 533(1–2):67–97

    PubMed  CAS  Google Scholar 

  • Kellermayer R (2005) Hailey-Hailey disease as an orthodisease of PMR1 deficiency in Saccharomyces cerevisiae. FEBS Lett 579(10):2021–2025

    PubMed  CAS  Google Scholar 

  • Klomp LW, Lin SJ et al (1997) Identification and functional expression of HAH1, a novel human gene involved in copper homeostasis. J Biol Chem 272(14):9221–9226

    PubMed  CAS  Google Scholar 

  • Klug A (2010) The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annu Rev Biochem 79:213–231

    PubMed  CAS  Google Scholar 

  • Knight SA, Labbe S et al (1996) A widespread transposable element masks expression of a yeast copper transport gene. Genes Dev 10(15):1917–1929

    PubMed  CAS  Google Scholar 

  • Kosman DJ (2003) Molecular mechanisms of iron uptake in fungi. Mol Microbiol 47(5):1185–1197

    PubMed  CAS  Google Scholar 

  • Krishna SS, Majumdar I et al (2003) Structural classification of zinc fingers: survey and summary. Nucleic Acids Res 31(2):532–550

    PubMed  CAS  Google Scholar 

  • Kumanovics A, Chen OS et al (2008) Identification of FRA1 and FRA2 as genes involved in regulating the yeast iron regulon in response to decreased mitochondrial iron-sulfur cluster synthesis. J Biol Chem 283(16):10276–10286

    PubMed  CAS  Google Scholar 

  • Kumar N (2006) Copper deficiency myelopathy (human swayback). Mayo Clin Proc 81(10):1371–1384

    PubMed  CAS  Google Scholar 

  • Kwok EY, Severance S et al (2006) Evidence for iron channeling in the Fet3p-Ftr1p high-affinity iron uptake complex in the yeast plasma membrane. Biochemistry 45(20):6317–6327

    PubMed  CAS  Google Scholar 

  • La Fontaine S, Mercer JF (2007) Trafficking of the copper-ATPases, ATP7A and ATP7B: role in copper homeostasis. Arch Biochem Biophys 463(2):149–167

    PubMed  CAS  Google Scholar 

  • Labbe S, Zhu Z et al (1997) Copper-specific transcriptional repression of yeast genes encoding critical components in the copper transport pathway. J Biol Chem 272(25):15951–15958

    PubMed  CAS  Google Scholar 

  • Laity JH, Lee BM et al (2001) Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol 11(1):39–46

    PubMed  CAS  Google Scholar 

  • Lander ES, Linton LM et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921

    PubMed  CAS  Google Scholar 

  • Lapinskas PJ, Cunningham KW et al (1995) Mutations in PMR1 suppress oxidative damage in yeast cells lacking superoxide dismutase. Mol Cell Biol 15(3):1382–1388

    PubMed  CAS  Google Scholar 

  • Larsson S, Kallebring B et al (1995) The CuA center of cytochrome-c oxidase: electronic structure and spectra of models compared to the properties of CuA domains. Proc Natl Acad Sci USA 92(16):7167–7171

    PubMed  CAS  Google Scholar 

  • Leonard S, Gannett PM et al (1998) Cobalt-mediated generation of reactive oxygen species and its possible mechanism. J Inorg Biochem 70(3–4):239–244

    PubMed  CAS  Google Scholar 

  • Lesuisse E, Raguzzi F et al (1987) Iron uptake by the yeast Saccharomyces cerevisiae: involvement of a reduction step. J Gen Microbiol 133(11):3229–3236

    PubMed  CAS  Google Scholar 

  • Lesuisse E, Santos R et al (2003) Iron use for haeme synthesis is under control of the yeast frataxin homologue (Yfh1). Hum Mol Genet 12(8):879–889

    PubMed  CAS  Google Scholar 

  • Li L, Chen OS et al (2001) CCC1 is a transporter that mediates vacuolar iron storage in yeast. J Biol Chem 276(31):29515–29519

    PubMed  CAS  Google Scholar 

  • Lill R, Muhlenhoff U (2006) Iron-sulfur protein biogenesis in eukaryotes: components and mechanisms. Annu Rev Cell Dev Biol 22:457–486

    PubMed  CAS  Google Scholar 

  • Lin SJ, Culotta VC (1995) The ATX1 gene of Saccharomyces cerevisiae encodes a small metal homeostasis factor that protects cells against reactive oxygen toxicity. Proc Natl Acad Sci USA 92(9):3784–3788

    PubMed  CAS  Google Scholar 

  • Lin SJ, Pufahl RA et al (1997) A role for the Saccharomyces cerevisiae ATX1 gene in copper trafficking and iron transport. J Biol Chem 272(14):9215–9220

    PubMed  CAS  Google Scholar 

  • Lin H, Kumanovics A et al (2008) A single amino acid change in the yeast vacuolar metal transporters ZRC1 and COT1 alters their substrate specificity. J Biol Chem 283(49):33865–33873

    PubMed  CAS  Google Scholar 

  • Lindskog S (1997) Structure and mechanism of carbonic anhydrase. Pharmacol Ther 74(1):1–20

    PubMed  CAS  Google Scholar 

  • Lippard SJ, Berg JM (1994) Principles of bioinorganic chemistry. University Science Books, Mill Valley

    Google Scholar 

  • Luk EE, Culotta VC (2001) Manganese superoxide dismutase in Saccharomyces cerevisiae acquires its metal co-factor through a pathway involving the Nramp metal transporter, Smf2p. J Biol Chem 276(50):47556–47562

    PubMed  CAS  Google Scholar 

  • Luk E, Carroll M et al (2003) Manganese activation of superoxide dismutase 2 in Saccharomyces cerevisiae requires MTM1, a member of the mitochondrial carrier family. Proc Natl Acad Sci USA 100(18):10353–10357

    PubMed  CAS  Google Scholar 

  • Lyons TJ, Gasch AP et al (2000) Genome-wide characterization of the Zap1p zinc-responsive regulon in yeast. Proc Natl Acad Sci USA 97(14):7957–7962

    PubMed  CAS  Google Scholar 

  • MacDiarmid CW, Gaither LA et al (2000) Zinc transporters that regulate vacuolar zinc storage in Saccharomyces cerevisiae. EMBO J 19(12):2845–2855

    PubMed  CAS  Google Scholar 

  • MacDiarmid CW, Milanick MA et al (2002) Biochemical properties of vacuolar zinc transport systems of Saccharomyces cerevisiae. J Biol Chem 277(42):39187–39194

    PubMed  CAS  Google Scholar 

  • MacDiarmid CW, Milanick MA et al (2003) Induction of the ZRC1 metal tolerance gene in zinc-limited yeast confers resistance to zinc shock. J Biol Chem 278(17):15065–15072

    PubMed  CAS  Google Scholar 

  • MacPherson IS, Murphy ME (2007) Type-2 copper-containing enzymes. Cell Mol Life Sci 64(22):2887–2899

    PubMed  CAS  Google Scholar 

  • Makeyev AV, Liebhaber SA (2002) The poly(C)-binding proteins: a multiplicity of functions and a search for mechanisms. RNA 8(3):265–278

    PubMed  CAS  Google Scholar 

  • Maret W, Sandstead HH (2006) Zinc requirements and the risks and benefits of zinc supplementation. J Trace Elem Med Biol 20(1):3–18

    PubMed  CAS  Google Scholar 

  • Martin CJ (2006) Manganese neurotoxicity: connecting the dots along the continuum of dysfunction. Neurotoxicology 27(3):347–349

    PubMed  CAS  Google Scholar 

  • Martins LJ, Jensen LT et al (1998) Metalloregulation of FRE1 and FRE2 homologs in Saccharomyces cerevisiae. J Biol Chem 273(37):23716–23721

    PubMed  CAS  Google Scholar 

  • Matile P, Wiemken A (1967) The vacuole as the lysosome of the yeast cell. Arch Mikrobiol 56(2):148–155

    PubMed  CAS  Google Scholar 

  • Matthews JM, Sunde M (2002) Zinc fingers—folds for many occasions. IUBMB Life 54(6):351–355

    PubMed  CAS  Google Scholar 

  • McCall KA, Huang C et al (2000) Function and mechanism of zinc metalloenzymes. J Nutr 130(5S Suppl):1437S–1446S

    PubMed  CAS  Google Scholar 

  • McGregor JA, Shayeghi M et al (2005) Impaired iron transport activity of ferroportin 1 in hereditary iron overload. J Membr Biol 206(1):3–7

    PubMed  CAS  Google Scholar 

  • Miller Y, Ma B et al (2010) Zinc ions promote Alzheimer Abeta aggregation via population shift of polymorphic states. Proc Natl Acad Sci USA 107(21):9490–9495

    PubMed  CAS  Google Scholar 

  • Missiaen L, Raeymaekers L et al (2004) SPCA1 pumps and Hailey-Hailey disease. Biochem Biophys Res Commun 322(4):1204–1213

    PubMed  CAS  Google Scholar 

  • Muhlenhoff U, Lill R (2000) Biogenesis of iron-sulfur proteins in eukaryotes: a novel task of mitochondria that is inherited from bacteria. Biochim Biophys Acta 1459(2–3):370–382

    PubMed  CAS  Google Scholar 

  • Muhlenhoff U, Stadler JA et al (2003) A specific role of the yeast mitochondrial carriers MRS3/4p in mitochondrial iron acquisition under iron-limiting conditions. J Biol Chem 278(42):40612–40620

    PubMed  Google Scholar 

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270(45):26723–26726

    PubMed  CAS  Google Scholar 

  • Nishida CR, Gralla EB et al (1994) Characterization of three yeast copper-zinc superoxide dismutase mutants analogous to those coded for in familial amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 91(21):9906–9910

    PubMed  CAS  Google Scholar 

  • Nishimura K, Igarashi K et al (1998) Proton gradient-driven nickel uptake by vacuolar membrane vesicles of Saccharomyces cerevisiae. J Bacteriol 180(7):1962–1964

    PubMed  CAS  Google Scholar 

  • Ono Y, Fujii T et al (1989) Phorbol ester binding to protein kinase C requires a cysteine-rich zinc-finger-like sequence. Proc Natl Acad Sci USA 86(13):4868–4871

    PubMed  CAS  Google Scholar 

  • Ooi CE, Rabinovich E et al (1996) Copper-dependent degradation of the Saccharomyces cerevisiae plasma membrane copper transporter Ctr1p in the apparent absence of endocytosis. EMBO J 15(14):3515–3523

    PubMed  CAS  Google Scholar 

  • Ostrerova-Golts N, Petrucelli L et al (2000) The A53T alpha-synuclein mutation increases iron-dependent aggregation and toxicity. J Neurosci 20(16):6048–6054

    PubMed  CAS  Google Scholar 

  • Ottolenghi AC (1965) Phospholipase C from Bacillus cereus, a zinc-requiring metalloenzyme. Biochim Biophys Acta 106(3):510–518

    PubMed  CAS  Google Scholar 

  • Outten CE, O’Halloran TV (2001) Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292(5526):2488–2492

    PubMed  CAS  Google Scholar 

  • Pagani MA, Casamayor A et al (2007) Disruption of iron homeostasis in Saccharomyces cerevisiae by high zinc levels: a genome-wide study. Mol Microbiol 65(2):521–537

    PubMed  CAS  Google Scholar 

  • Pan KM, Stahl N et al (1992) Purification and properties of the cellular prion protein from Syrian hamster brain. Protein Sci 1(10):1343–1352

    PubMed  CAS  Google Scholar 

  • Pantopoulos K (2004) Iron metabolism and the IRE/IRP regulatory system: an update. Ann N Y Acad Sci 1012:1–13

    PubMed  CAS  Google Scholar 

  • Pavletich NP, Pabo CO (1991) Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science 252(5007):809–817

    PubMed  CAS  Google Scholar 

  • Perl DP, Olanow CW (2007) The neuropathology of manganese-induced Parkinsonism. J Neuropathol Exp Neurol 66(8):675–682

    PubMed  CAS  Google Scholar 

  • Philpott CC, Protchenko O et al (2002) The response to iron deprivation in Saccharomyces cerevisiae: expression of siderophore-based systems of iron uptake. Biochem Soc Trans 30(4):698–702

    PubMed  CAS  Google Scholar 

  • Pierre JL, Fontecave M (1999) Iron and activated oxygen species in biology: the basic chemistry. Biometals 12(3):195–199

    PubMed  CAS  Google Scholar 

  • Pietrangelo A (2004) Hereditary hemochromatosis—a new look at an old disease. N Engl J Med 350(23):2383–2397

    PubMed  CAS  Google Scholar 

  • Plocke DJ, Levinthal C et al (1962) Alkaline phosphatase of Escherichia coli: a zinc metalloenzyme. Biochemistry 1:373–378

    PubMed  CAS  Google Scholar 

  • Ponka P (1999) Cell biology of heme. Am J Med Sci 318(4):241–256

    PubMed  CAS  Google Scholar 

  • Ponka P, Sheftel AD et al (2002) Iron targeting to mitochondria in erythroid cells. Biochem Soc Trans 30(4):735–738

    PubMed  CAS  Google Scholar 

  • Portnoy ME, Liu XF et al (2000) Saccharomyces cerevisiae expresses three functionally distinct homologues of the nramp family of metal transporters. Mol Cell Biol 20(21):7893–7902

    PubMed  CAS  Google Scholar 

  • Portnoy ME, Jensen LT et al (2002) The distinct methods by which manganese and iron regulate the Nramp transporters in yeast. Biochem J 362(Pt 1):119–124

    PubMed  CAS  Google Scholar 

  • Prasad AS (2009) Zinc: role in immunity, oxidative stress and chronic inflammation. Curr Opin Clin Nutr Metab Care 12(6):646–652

    PubMed  CAS  Google Scholar 

  • Prasad AS, Miale A Jr et al (1990) Clinical and experimental. Zinc metabolism in patients with the syndrome of iron deficiency anemia, hepatosplenomegaly, dwarfism, and hypogonadism. 1963. J Lab Clin Med 116(5):737–749

    PubMed  CAS  Google Scholar 

  • Puig S, Lee J et al (2002) Biochemical and genetic analyses of yeast and human high affinity copper transporters suggest a conserved mechanism for copper uptake. J Biol Chem 277(29):26021–26030

    PubMed  CAS  Google Scholar 

  • Radisky D, Kaplan J (1999) Regulation of transition metal transport across the yeast plasma membrane. J Biol Chem 274(8):4481–4484

    PubMed  CAS  Google Scholar 

  • Rana A, Gnaneswari D et al (2009) Prion metal interaction: is prion pathogenesis a cause or a consequence of metal imbalance? Chem Biol Interact 181(3):282–291

    PubMed  CAS  Google Scholar 

  • Rasia RM, Bertoncini CW et al (2005) Structural characterization of copper(II) binding to alpha-synuclein: insights into the bioinorganic chemistry of Parkinson’s disease. Proc Natl Acad Sci USA 102(12):4294–4299

    PubMed  CAS  Google Scholar 

  • Ravindranath SD, Fridovich I (1975) Isolation and characterization of a manganese-containing superoxide dismutase from yeast. J Biol Chem 250(15):6107–6112

    PubMed  CAS  Google Scholar 

  • Reddi AR, Jensen LT et al (2009a) Manganese homeostasis in Saccharomyces cerevisiae. Chem Rev 109(10):4722–4732

    PubMed  CAS  Google Scholar 

  • Reddi AR, Jensen LT et al (2009b) The overlapping roles of manganese and Cu/Zn SOD in oxidative stress protection. Free Radic Biol Med 46(2):154–162

    PubMed  CAS  Google Scholar 

  • Rees EM, Lee J et al (2004) Mobilization of intracellular copper stores by the ctr2 vacuolar copper transporter. J Biol Chem 279(52):54221–54229

    PubMed  CAS  Google Scholar 

  • Robinson NJ, Winge DR (2010) Copper metallochaperones. Annu Rev Biochem 79:537–562

    PubMed  CAS  Google Scholar 

  • Robson KJ, Merryweather-Clarke AT et al (2004) Recent advances in understanding haemochromatosis: a transition state. J Med Genet 41(10):721–730

    PubMed  CAS  Google Scholar 

  • Roetto A, Totaro A et al (2001) New mutations inactivating transferrin receptor 2 in hemochromatosis type 3. Blood 97(9):2555–2560

    PubMed  CAS  Google Scholar 

  • Rogers JT, Randall JD et al (2002) An iron-responsive element type II in the 5′-untranslated region of the Alzheimer’s amyloid precursor protein transcript. J Biol Chem 277(47):45518–45528

    PubMed  CAS  Google Scholar 

  • Rosen DR, Siddique T et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362(6415):59–62

    PubMed  CAS  Google Scholar 

  • Roth JA (2006) Homeostatic and toxic mechanisms regulating manganese uptake, retention, and elimination. Biol Res 39(1):45–57

    PubMed  CAS  Google Scholar 

  • Rund D, Fucharoen S (2008) Genetic modifiers in hemoglobinopathies. Curr Mol Med 8(7):600–608

    PubMed  CAS  Google Scholar 

  • Rutherford JC, Bird AJ (2004) Metal-responsive transcription factors that regulate iron, zinc, and copper homeostasis in eukaryotic cells. Eukaryot Cell 3(1):1–13

    PubMed  CAS  Google Scholar 

  • Rutherford JC, Jaron S et al (2001) A second iron-regulatory system in yeast independent of Aft1p. Proc Natl Acad Sci USA 98(25):14322–14327

    PubMed  CAS  Google Scholar 

  • Santamaria AB, Sulsky SI (2010) Risk assessment of an essential element: manganese. J Toxicol Environ Health A 73(2):128–155

    PubMed  CAS  Google Scholar 

  • Saurin AJ, Borden KL et al (1996) Does this have a familiar RING? Trends Biochem Sci 21(6):208–214

    PubMed  CAS  Google Scholar 

  • Schmidt PJ, Ramos-Gomez M et al (1999) A gain of superoxide dismutase (SOD) activity obtained with CCS, the copper metallochaperone for SOD1. J Biol Chem 274(52):36952–36956

    PubMed  CAS  Google Scholar 

  • Seetharaman SV, Prudencio M et al (2009) Immature copper-zinc superoxide dismutase and familial amyotrophic lateral sclerosis. Exp Biol Med (Maywood) 234(10):1140–1154

    CAS  Google Scholar 

  • Sera T (2009) Zinc-finger-based artificial transcription factors and their applications. Adv Drug Deliv Rev 61(7–8):513–526

    PubMed  CAS  Google Scholar 

  • Shakoury-Elizeh M, Tiedeman J et al (2004) Transcriptional remodeling in response to iron deprivation in Saccharomyces cerevisiae. Mol Biol Cell 15(3):1233–1243

    PubMed  CAS  Google Scholar 

  • Shakoury-Elizeh M, Protchenko O et al (2010) Metabolic response to iron deficiency in Saccharomyces cerevisiae. J Biol Chem 285(19):14823–14833

    PubMed  CAS  Google Scholar 

  • Shankar AH, Prasad AS (1998) Zinc and immune function: the biological basis of altered resistance to infection. Am J Clin Nutr 68(2 Suppl):447S–463S

    PubMed  CAS  Google Scholar 

  • Shaw GC, Cope JJ et al (2006) Mitoferrin is essential for erythroid iron assimilation. Nature 440(7080):96–100

    PubMed  CAS  Google Scholar 

  • Shi W, Zhan C et al (2005) Metalloproteomics: high-throughput structural and functional annotation of proteins in structural genomics. Structure 13(10):1473–1486

    PubMed  CAS  Google Scholar 

  • Shi H, Bencze KZ et al (2008) A cytosolic iron chaperone that delivers iron to ferritin. Science 320(5880):1207–1210

    PubMed  CAS  Google Scholar 

  • Simm C, Lahner B et al (2007) Saccharomyces cerevisiae vacuole in zinc storage and intracellular zinc distribution. Eukaryot Cell 6(7):1166–1177

    PubMed  CAS  Google Scholar 

  • Singh A, Severance S et al (2006) Assembly, activation, and trafficking of the Fet3p.Ftr1p high affinity iron permease complex in Saccharomyces cerevisiae. J Biol Chem 281(19):13355–13364

    PubMed  CAS  Google Scholar 

  • Singh A, Kaur N et al (2007) The metalloreductase Fre6p in Fe-efflux from the yeast vacuole. J Biol Chem 282(39):28619–28626

    PubMed  CAS  Google Scholar 

  • Stadler JA, Schweyen RJ (2002) The yeast iron regulon is induced upon cobalt stress and crucial for cobalt tolerance. J Biol Chem 277(42):39649–39654

    PubMed  CAS  Google Scholar 

  • Stearman R, Yuan DS et al (1996) A permease-oxidase complex involved in high-affinity iron uptake in yeast. Science 271(5255):1552–1557

    PubMed  CAS  Google Scholar 

  • Stimpson HE, Lewis MJ et al (2006) Transferrin receptor-like proteins control the degradation of a yeast metal transporter. EMBO J 25(4):662–672

    PubMed  CAS  Google Scholar 

  • Sudbrak R, Brown J et al (2000) Hailey-Hailey disease is caused by mutations in ATP2C1 encoding a novel Ca(2+) pump. Hum Mol Genet 9(7):1131–1140

    PubMed  CAS  Google Scholar 

  • Sullivan JA, Lewis MJ et al (2007) Multiple interactions drive adaptor-mediated recruitment of the ubiquitin ligase rsp5 to membrane proteins in vivo and in vitro. Mol Biol Cell 18(7):2429–2440

    PubMed  CAS  Google Scholar 

  • Supek F, Supekova L et al (1996) A yeast manganese transporter related to the macrophage protein involved in conferring resistance to mycobacteria. Proc Natl Acad Sci USA 93(10):5105–5110

    PubMed  CAS  Google Scholar 

  • Takumi S, Kimura H et al (2010) DNA microarray analysis of genomic responses of yeast Saccharomyces cerevisiae to nickel chloride. J Toxicol Sci 35(1):125–129

    PubMed  CAS  Google Scholar 

  • Tapiero H, Tew KD (2003) Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed Pharmacother 57(9):399–411

    PubMed  CAS  Google Scholar 

  • Tejada-Jimenez M, Galvan A et al (2009) Homeostasis of the micronutrients Ni, Mo and Cl with specific biochemical functions. Curr Opin Plant Biol 12(3):358–363

    PubMed  CAS  Google Scholar 

  • Tommos C, Hoganson CW et al (1998) Manganese and tyrosyl radical function in photosynthetic oxygen evolution. Curr Opin Chem Biol 2(2):244–252

    PubMed  CAS  Google Scholar 

  • Ton VK, Mandal D et al (2002) Functional expression in yeast of the human secretory pathway Ca(2+), Mn(2+)-ATPase defective in Hailey-Hailey disease. J Biol Chem 277(8):6422–6427

    PubMed  CAS  Google Scholar 

  • Torti FM, Torti SV (2002) Regulation of ferritin genes and protein. Blood 99(10):3505–3516

    PubMed  CAS  Google Scholar 

  • Tumer Z, Moller LB et al (1999) Mutation spectrum of ATP7A, the gene defective in Menkes disease. Adv Exp Med Biol 448:83–95

    PubMed  CAS  Google Scholar 

  • Turek MJ, Fazel N (2009) Zinc deficiency. Curr Opin Gastroenterol 25:136–143

    Google Scholar 

  • Ueta R, Fujiwara N et al (2007) Mechanism underlying the iron-dependent nuclear export of the iron-responsive transcription factor Aft1p in Saccharomyces cerevisiae. Mol Biol Cell 18(8):2980–2990

    PubMed  CAS  Google Scholar 

  • Umbreit J (2005) Iron deficiency: a concise review. Am J Hematol 78(3):225–231

    PubMed  CAS  Google Scholar 

  • Urbanowski JL, Piper RC (1999) The iron transporter Fth1p forms a complex with the Fet5 iron oxidase and resides on the vacuolar membrane. J Biol Chem 274(53):38061–38070

    PubMed  CAS  Google Scholar 

  • Uriu-Adams JY, Scherr RE et al (2010) Influence of copper on early development: prenatal and postnatal considerations. Biofactors 36(2):136–152

    PubMed  CAS  Google Scholar 

  • Valko M, Morris H et al (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12(10):1161–1208

    PubMed  CAS  Google Scholar 

  • Van Baelen K, Dode L et al (2004) The Ca2+/Mn2+ pumps in the Golgi apparatus. Biochim Biophys Acta 1742(1–3):103–112

    PubMed  Google Scholar 

  • van Loon AP, Pesold-Hurt B et al (1986) A yeast mutant lacking mitochondrial manganese-superoxide dismutase is hypersensitive to oxygen. Proc Natl Acad Sci USA 83(11):3820–3824

    PubMed  Google Scholar 

  • Vidal R, Ghetti B et al (2004) Intracellular ferritin accumulation in neural and extraneural tissue characterizes a neurodegenerative disease associated with a mutation in the ferritin light polypeptide gene. J Neuropathol Exp Neurol 63(4):363–380

    PubMed  CAS  Google Scholar 

  • Wang J, Slunt H et al (2003) Copper-binding-site-null SOD1 causes ALS in transgenic mice: aggregates of non-native SOD1 delineate a common feature. Hum Mol Genet 12(21):2753–2764

    PubMed  CAS  Google Scholar 

  • Wang F, Kim BE et al (2004) Acrodermatitis enteropathica mutations affect transport activity, localization and zinc-responsive trafficking of the mouse ZIP4 zinc transporter. Hum Mol Genet 13(5):563–571

    PubMed  CAS  Google Scholar 

  • Wang J, Xu G et al (2005) Somatodendritic accumulation of misfolded SOD1-L126Z in motor neurons mediates degeneration: alphaB-crystallin modulates aggregation. Hum Mol Genet 14(16):2335–2347

    PubMed  CAS  Google Scholar 

  • Wang Z, Feng LS et al (2006) Solution structure of a Zap1 zinc-responsive domain provides insights into metalloregulatory transcriptional repression in Saccharomyces cerevisiae. J Mol Biol 357(4):1167–1183

    PubMed  CAS  Google Scholar 

  • Waters BM, Eide DJ (2002) Combinatorial control of yeast FET4 gene expression by iron, zinc, and oxygen. J Biol Chem 277(37):33749–33757

    PubMed  CAS  Google Scholar 

  • West AP Jr, Giannetti AM et al (2001) Mutational analysis of the transferrin receptor reveals overlapping HFE and transferrin binding sites. J Mol Biol 313(2):385–397

    PubMed  CAS  Google Scholar 

  • West AR, Thomas C et al (2006) Haemochromatosis protein is expressed on the terminal web of enterocytes in proximal small intestine of the rat. Histochem Cell Biol 125(3):283–292

    PubMed  CAS  Google Scholar 

  • Westergard L, Christensen HM et al (2007) The cellular prion protein (PrP(C)): its physiological function and role in disease. Biochim Biophys Acta 1772(6):629–644

    PubMed  CAS  Google Scholar 

  • Williams RJP (1987) The biochemistry of zinc. Polyhedron 6(1):61–69

    CAS  Google Scholar 

  • Wilson RB, Roof DM (1997) Respiratory deficiency due to loss of mitochondrial DNA in yeast lacking the frataxin homologue. Nat Genet 16(4):352–357

    PubMed  CAS  Google Scholar 

  • Winge DR, Nielson KB et al (1985) Yeast metallothionein. Sequence and metal-binding properties. J Biol Chem 260(27):14464–14470

    PubMed  CAS  Google Scholar 

  • Winzeler EA, Shoemaker DD et al (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285(5429):901–906

    PubMed  CAS  Google Scholar 

  • Wong BS, Chen SG et al (2001) Aberrant metal binding by prion protein in human prion disease. J Neurochem 78(6):1400–1408

    PubMed  CAS  Google Scholar 

  • Wu CY, Bird AJ et al (2008) Differential control of Zap1-regulated genes in response to zinc deficiency in Saccharomyces cerevisiae. BMC Genomics 9:370

    PubMed  Google Scholar 

  • Wuehler SE, Peerson JM et al (2005) Use of national food balance data to estimate the adequacy of zinc in national food supplies: methodology and regional estimates. Public Health Nutr 8(7):812–819

    PubMed  Google Scholar 

  • Yamaguchi-Iwai Y, Dancis A et al (1995) AFT1: a mediator of iron regulated transcriptional control in Saccharomyces cerevisiae. EMBO J 14(6):1231–1239

    PubMed  CAS  Google Scholar 

  • Yamaguchi-Iwai Y, Stearman R et al (1996) Iron-regulated DNA binding by the AFT1 protein controls the iron regulon in yeast. EMBO J 15(13):3377–3384

    PubMed  CAS  Google Scholar 

  • Yamasaki S, Sakata-Sogawa K et al (2007) Zinc is a novel intracellular second messenger. J Cell Biol 177(4):637–645

    PubMed  CAS  Google Scholar 

  • Yocum CF, Pecoraro VL (1999) Recent advances in the understanding of the biological chemistry of manganese. Curr Opin Chem Biol 3(2):182–187

    PubMed  CAS  Google Scholar 

  • Yonkovich J, McKenndry R et al (2002) Copper ion-sensing transcription factor Mac1p post-translationally controls the degradation of its target gene product Ctr1p. J Biol Chem 277(27):23981–23984

    PubMed  CAS  Google Scholar 

  • Yuan DS, Stearman R et al (1995) The Menkes/Wilson disease gene homologue in yeast provides copper to a ceruloplasmin-like oxidase required for iron uptake. Proc Natl Acad Sci USA 92(7):2632–2636

    PubMed  CAS  Google Scholar 

  • Zhang Y, Gladyshev VN (2009) Comparative genomics of trace elements: emerging dynamic view of trace element utilization and function. Chem Rev 109(10):4828–4861

    PubMed  CAS  Google Scholar 

  • Zhang AS, Sheftel AD et al (2005a) Intracellular kinetics of iron in reticulocytes: evidence for endosome involvement in iron targeting to mitochondria. Blood 105(1):368–375

    PubMed  CAS  Google Scholar 

  • Zhang Y, Lyver ER et al (2005b) Frataxin and mitochondrial carrier proteins, Mrs3p and Mrs4p, cooperate in providing iron for heme synthesis. J Biol Chem 280(20):19794–19807

    PubMed  CAS  Google Scholar 

  • Zhang Y, Lyver ER et al (2006) Mrs3p, Mrs4p, and frataxin provide iron for Fe-S cluster synthesis in mitochondria. J Biol Chem 281(32):22493–22502

    PubMed  CAS  Google Scholar 

  • Zhao H, Eide D (1996a) The yeast ZRT1 gene encodes the zinc transporter protein of a high-affinity uptake system induced by zinc limitation. Proc Natl Acad Sci USA 93(6):2454–2458

    PubMed  CAS  Google Scholar 

  • Zhao H, Eide D (1996b) The ZRT2 gene encodes the low affinity zinc transporter in Saccharomyces cerevisiae. J Biol Chem 271(38):23203–23210

    PubMed  CAS  Google Scholar 

  • Zhao H, Eide DJ (1997) Zap1p, a metalloregulatory protein involved in zinc-responsive transcriptional regulation in Saccharomyces cerevisiae. Mol Cell Biol 17(9):5044–5052

    PubMed  CAS  Google Scholar 

  • Zhao H, Butler E et al (1998) Regulation of zinc homeostasis in yeast by binding of the ZAP1 transcriptional activator to zinc-responsive promoter elements. J Biol Chem 273(44):28713–28720

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a grant from the Canadian Institute for Health Research (to RTAM). MRB was supported by a graduate fellowship from the Strategic Training Program in Transfusion Science funded by CIHR and the Heart & Stroke Foundation of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ross T. A. MacGillivray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bleackley, M.R., MacGillivray, R.T.A. Transition metal homeostasis: from yeast to human disease. Biometals 24, 785–809 (2011). https://doi.org/10.1007/s10534-011-9451-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-011-9451-4

Keywords

Navigation