Skip to main content

Advertisement

Log in

Marine Siderophores and Microbial Iron Mobilization

  • Published:
Biometals Aims and scope Submit manuscript

Abstract

Iron is essential for the growth of nearly all microorganisms yet iron is only sparingly soluble near the neutral pH, aerobic conditions in which many microorganisms grow. The pH of ocean water is even higher, thereby further lowering the concentration of dissolved ferric ion. To compound the problem of availability, the total iron concentration is surprisingly low in surface ocean water, yet nevertheless, marine microorganisms still require iron for growth. Like terrestrial bacterial, bacteria isolated from open ocean water often produce siderophores, which are low molecular weight chelating ligands that facilitate the microbial acquisition of iron. The present review summarizes the structures of siderophores produced by marine bacteria and the emerging characteristics that distinguish marine siderophores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AM Albrecht-Gary AL Crumbliss (1998) ArticleTitleThe coordination chemistry of siderophores: thermodynamics and kinetics of iron chelation and release Metal Ions Biol Syst 35 239–327

    Google Scholar 

  • K Barbeau EL Rue KW Bruland A Butler (2001) ArticleTitlePhotochemical cycling of iron in the surface ocean mediated by microbial iron(III)-binding ligands Nature 413 409–413 Occurrence Handle10.1038/35096545 Occurrence Handle11574885

    Article  PubMed  Google Scholar 

  • K Barbeau G Zhang DH Live A Butler (2002) ArticleTitlePetrobactin, a photoreactive siderophore produced by the oil-degrading marine bacterium Marinobacter hydrocarbonoclasticus J Am Chem Soc 124 378–379 Occurrence Handle10.1021/ja0119088 Occurrence Handle11792199

    Article  PubMed  Google Scholar 

  • K Barbeau EL Rue CG Trick KW Bruland A Butler (2003) ArticleTitleThe photochemical reactivity of siderophores produced by marine heterotrophic bacteria and cyanobacteria based on characteristic iron(III)-binding groups Limnol Oceanogr 48 1069–1078

    Google Scholar 

  • RJ Bergeron G Huang RE Smith et al. (2003) ArticleTitleTotal synthesis and structure revision of petrobactin Tetrahedron 59 2007–2014 Occurrence Handle10.1016/S0040-4020(03)00103-0

    Article  Google Scholar 

  • PW Boyd CS Law CS Wong et al. (2004) ArticleTitleThe decline and fate of an iron-induced subarctic phytoplankton bloom Nature 428 549–553 Occurrence Handle10.1038/nature02437 Occurrence Handle15058302

    Article  PubMed  Google Scholar 

  • PW Boyd AJ Watson CS Law et al. (2000) ArticleTitleA mesoscale phytoplankton bloom in the polar Southern ocean stimulated by iron fertilization Nature 407 695–702 Occurrence Handle10.1038/35037500 Occurrence Handle11048709

    Article  PubMed  Google Scholar 

  • KH Coale KS Johnson FP Chavez et al. (2004) ArticleTitleSouthern ocean iron enrichment experiment: carbon cycling in high- and low-Si waters Science 304 408–414 Occurrence Handle10.1126/science.1089778 Occurrence Handle15087542

    Article  PubMed  Google Scholar 

  • KH Coale KS Johnson SE Fitzwater et al. (1996) ArticleTitleA massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean Nature 383 495–501 Occurrence Handle10.1038/383495a0

    Article  Google Scholar 

  • Crosa JH et al. 2004 Iron transport in bacteria, AMS Press and chapters therein.

  • HJW Debaar JTM Dejong DCE Bakker et al. (1995) ArticleTitleImportance of iron for plankton blooms and carbon dioxide drawdown in the Southern ocean Nature 373 412–415 Occurrence Handle10.1038/373412a0

    Article  Google Scholar 

  • EA Fadeev M Luo JT Groves (2004) ArticleTitleSynthesis, structure, and molecular dynamics of gallium complexes of schizokinen and the amphiphilic siderophore acinetoferrin J Am Chem Soc 126 12065–12075 Occurrence Handle10.1021/ja048145j Occurrence Handle15382941

    Article  PubMed  Google Scholar 

  • CB Field MJ Behrenfeld JT Randerson P Falkowski (1998) ArticleTitlePrimary production of the biosphere: integrating terrestrial and oceanic components Science 281 237–240 Occurrence Handle10.1126/science.281.5374.237 Occurrence Handle9657713

    Article  PubMed  Google Scholar 

  • M Gledhill CMG Vandenberg (1994) ArticleTitleDetermination of complexation of iron(III) with natural organic complexing ligands in seawater using cathodic stripping voltammetry Mar Chem 47 41–54 Occurrence Handle10.1016/0304-4203(94)90012-4

    Article  Google Scholar 

  • J Gobin MA Horwitz (1996) ArticleTitleExochelins of Mycobacterium tuberculosis remove iron from human iron-binding proteins and donate iron to mycobactins in the M. tuberculosis cell wall J Exp Med 183 1527–1532 Occurrence Handle10.1084/jem.183.4.1527 Occurrence Handle8666910

    Article  PubMed  Google Scholar 

  • H Haag HP Fiedler J Meiwes H Drechsel G Jung H Zähner (1994) ArticleTitleIsolation and biological characterization of staphyloferrin B, a compound with siderophore activity from staphylococci FEMS Microbiol Lett 115 125–130 Occurrence Handle10.1016/0378-1097(94)90002-7 Occurrence Handle8138126

    Article  PubMed  Google Scholar 

  • MG Haygood PD Holt A Butler (1993) ArticleTitleAerobactin production by a planktonic marine Vibrio sp Limnol Oceanogr 38 1091–1097

    Google Scholar 

  • SJH Hickford FC Kupper G Zhang CJ Carrano JW Blunt A Butler (2004) ArticleTitlePetrobactin sulfonate, a new siderophore produced by the marine bacterium Marinobacter hydrocarbonoclasticus J Natl Prod 67 1897–1899 Occurrence Handle10.1021/np049823i

    Article  Google Scholar 

  • KS Johnson RM Gordon KH Coale (1997) ArticleTitleWhat controls dissolved iron concentration in the world ocean? Mar Chem 57 137–161 Occurrence Handle10.1016/S0304-4203(97)00043-1

    Article  Google Scholar 

  • K Kanoh K Kamino G Leleo K Adachi Y Shizuri (2003) ArticleTitlePseudoalterobactins A and B, new siderophores excreted by marine bacterium Pseudoalteromonas sp KP20–4 J. Antibiotics 56 871–875

    Google Scholar 

  • S Kokubo K Suenaga C Shinohara T Tsuji D Uemura (2000) ArticleTitleStructures of amamistatins A and B, novel growth inhibitors of human tumor cell lines from Nocardia asteroides Tetrahedron 56 6435–6440 Occurrence Handle10.1016/S0040-4020(00)00591-3

    Article  Google Scholar 

  • B Kunze W Trowitzschkienast G Hofle H Reichenbach (1992) ArticleTitleAntibiotics from gliding bacteria. 46. Nannochelin A, nannochelin B and nannochelin C, new iron-chelating compounds from Nannocystis exedens (Myxobacteria) production, isolation, physicochemical and biological properties J Antibiot 45 147–150 Occurrence Handle1556005

    PubMed  Google Scholar 

  • M Luo EA Fadeev J Groves (2005) ArticleTitleMembrane dynamics of the amphiphilic siderophore, acinetoferrin J Am Chem Soc 127 1726–1736 Occurrence Handle10.1021/ja044230f Occurrence Handle15701007

    Article  PubMed  Google Scholar 

  • HM Macrellis CG Trick EL Rue G Smith GW Bruland (2001) ArticleTitleCollection and detection of natural iron binding ligands from seawater Mar Chem 76 175–187 Occurrence Handle10.1016/S0304-4203(01)00061-5

    Article  Google Scholar 

  • JH Martin (1990) ArticleTitleGlacial-interclacial CO2 change: the iron hypothesis Paleoceanography 5 1–13

    Google Scholar 

  • JH Martin KH Coale KS Johnson et al. (1994) ArticleTitleTesting the iron hypothesis in ecosystems of the equatorial Pacific Ocean Nature 371 123–129

    Google Scholar 

  • JH Martin SE Fitzwater (1988) ArticleTitleIron deficiency limits phytoplankton growth in the north-east Pacific subarctic Nature 331 341–343

    Google Scholar 

  • JH Martin RM Gordon SE Fitzwater (1991) ArticleTitleThe case for iron Limnol Oceanogr 36 1793–1802

    Google Scholar 

  • JS Martinez JN Carter-Franklin EL Mann et al. (2003) ArticleTitleStructure and membrane affinity of a suite of amphiphilic siderophores produced by a marine bacterium Proc Natl Acad Sci USA 100 3754–3759 Occurrence Handle10.1073/pnas.0637444100 Occurrence Handle12651947

    Article  PubMed  Google Scholar 

  • JS Martinez GP Zhang PD Holt et al. (2000) ArticleTitleSelf-assembling amphiphilic siderophores from marine bacteria Science 287 1245–1247 Occurrence Handle10.1126/science.287.5456.1245 Occurrence Handle10678827

    Article  PubMed  Google Scholar 

  • JM Meyer VT Van A Stintzi O Berge G Winkelmann (1995) ArticleTitleOrnibactin production and transport properties in strains of Burkholderia vietnamiensis and Burkholderia cepacia(formerly Pseudomonas cepacia) Biometals 8 309–317 Occurrence Handle10.1007/BF00141604 Occurrence Handle7580051

    Article  PubMed  Google Scholar 

  • FMM Morel NM Price (2003) ArticleTitleThe biogeochemical cycles of trace metals in the oceans Science 300 944–947 Occurrence Handle10.1126/science.1083545 Occurrence Handle12738853

    Article  PubMed  Google Scholar 

  • Y Murakami S Kato M Nakajima et al. (1996) ArticleTitleFormobactin, a novel free radical scavenging and neuronal cell protecting substance from Nocardia sp J Antibiot(Tokyo) 49 839–845

    Google Scholar 

  • M Münzinger H Budzikiewicz D Expert C Enard JM Meyer (2000) ArticleTitleAchromobactin, a new citrate siderophore of Erwinia chrysanthemi Z Naturforsch, C: Bioscience 55 328–332

    Google Scholar 

  • N Okujo Y Sakakibara T Yoshida S Yamamoto (1994) ArticleTitleStructure of acinetoferrin, a new citrate-based dihydroxamate siderophore from Acinetobacter haemolyticus Biometals 7 170–176 Occurrence Handle8148619

    PubMed  Google Scholar 

  • M Persmark P Pittman JS Buyer et al. (1993) ArticleTitleIsolation and structure of rhizobactin 1021, a siderophore from the alfalfa symbiont Rhizobium meliloti 1021 J Am Chem Soc 115 3950–3956 Occurrence Handle10.1021/ja00063a014

    Article  Google Scholar 

  • C Ratledge PV Patel (1976) ArticleTitleIsolation, properties and taxonomic relevance of lipid-soluble, iron-binding compounds (nocobactins) from Nocardia J Gen Microbiol 93 141–152 Occurrence Handle1262855

    PubMed  Google Scholar 

  • C Ratledge J Dale (1999) Mycobacteria: molecular biology and virulence Blackwell Science Ltd. Oxford, UK

    Google Scholar 

  • D Risse H Beiderbeck K Taraz H Budzikiewicz D Gustine (1998) ArticleTitleCorrugatin, a lipopeptide siderophore from Pseudomonas corrugata Z Naturforsch, C: Bioscience 53 295–304

    Google Scholar 

  • EL Rue KW Bruland (1995) ArticleTitleComplexation of iron(III) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibration/adsorptive cathodic stripping voltammetric method Mar Chem 50 117–138 Occurrence Handle10.1016/0304-4203(95)00031-L

    Article  Google Scholar 

  • EL Rue KW Bruland (1997) ArticleTitleThe role of organic complexation on ambient iron chemistry in the equatorial Pacific Ocean and the response of a mesoscale iron addition experiment Limnol Oceanogr 42 901–910

    Google Scholar 

  • H Stephan S Freund W Beck G Jung JM Meyer G Winkelmann (1993) ArticleTitleOrnibactins – a new family of siderophores from Pseudomonas Biometals 6 93–100 Occurrence Handle10.1007/BF00140109 Occurrence Handle7689374

    Article  PubMed  Google Scholar 

  • K Suenaga S Kokubo C Shinohara T Tsuji D Uemura (1999) ArticleTitleStructures of amamistatins A and B, novel growth inhibitors of human tumor cell lines from an actinomycete Tetrahedron Lett 40 1945–1948 Occurrence Handle10.1016/S0040-4039(99)00050-7

    Article  Google Scholar 

  • A Tsuda S Takeda H Saito et al. (2003) ArticleTitleA mesoscale iron enrichment in the western subarctic Pacific induces a large centric diatom bloom Science 300 958–961 Occurrence Handle10.1126/science.1082000 Occurrence Handle12738858

    Article  PubMed  Google Scholar 

  • G Winkelmann (2002) ArticleTitleMicrobial siderophore-mediated transport Biochem Soc Trans 30 691–696 Occurrence Handle10.1042/BST0300691 Occurrence Handle12196166

    Article  PubMed  Google Scholar 

  • J Wu GW Luther (1995) ArticleTitleComplexation of Fe(III) by natural organic ligands in the Northwest Atlantic Ocean by a competitive ligand equilibration method and a kinetic approach Mar Chem 50 159–177 Occurrence Handle10.1016/0304-4203(95)00033-N

    Article  Google Scholar 

  • S Yamamoto N Okujo T Yoshida S Matsuura S Shinoda (1994) ArticleTitleStructure and iron transport activity of vibrioferrin, a new siderophore of Vibrio parahaemolyticus J Biochem (Tokyo) 115 868–874

    Google Scholar 

  • G Xu JS Martinez JT Groves A Butler (2002) ArticleTitleMembrane affinity of the amphiphilic marinobactin siderophores J Am Chem Soc 124 13408–13415 Occurrence Handle10.1021/ja026768w Occurrence Handle12418892

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison Butler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butler, A. Marine Siderophores and Microbial Iron Mobilization. Biometals 18, 369–374 (2005). https://doi.org/10.1007/s10534-005-3711-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-005-3711-0

Key words

Navigation