Skip to main content

Advertisement

Log in

Nitrate retention at the river–watershed interface: a new conceptual modeling approach

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Denitrification in riparian wetlands plays a major role in eliminating nitrate coming from agricultural watershed uplands before they reach river water. A new approach was developed for representing this process in the biogeochemical Riverstrahler model, using a single adjustable parameter representing the potential denitrification rate of wetland soils. Applied to the case of three watersheds with contrasting size, land-use and hydro-climatic regime, namely the Seine and the Loir rivers (France) and the Red River (Vietnam), this new model is able to capture the general level of nitrate concentrations as well as their seasonal variations everywhere over the drainage network. The nitrogen budgets calculated from the results show that riparian denitrification eliminates between 10 and 50% of the diffuse sources of nitrogen into the hydrosystem coming from soil nitrate leaching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data from Agricultural Census, 2010, Agreste

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alexander RB, Smith RA, Schwarz GE, Preston SD, Brakebill JW, Srinivasan R, Pacheco PA (2001) Atmospheric nitrogen flux from the watersheds of major estuaries of the United States: an application of the SPARROW watershed model. In: Valigura R, Alexander R, Castro M, Meyers T, Paerl H, Stacey P, Turner RE (Eds) Nitrogen loading in coastal water bodies: an atmospheric perspective. American Geophysical Union Monograph, vol 57, pp 119–170

  • Ambus P (1993) Control of denitrification enzyme activity in a streamside soil. FEMS Lett 102:225–234

    Article  Google Scholar 

  • Anderson TR, Goodale CL, Groffman PM, Walter MT (2014) Assessing denitrification from seasonally saturated soils in an agricultural landscape: a farm scale mass-balance approach. Agr Ecosyst Environ 189:60–69

    Article  Google Scholar 

  • Anglade J (2015) Agriculture biologique et qualité des ressources en eau dans le bassin de la Seine. Caractérisation des pratiques et applications territorialisées. Thèse de l’UPMC. Chapitre 5: du surplus à la lixiviation

  • Anglade J, Billen G, Garnier J (2015) Relationships for estimating N2 fixation in legumes: incidence for N balance of legume-based cropping systems in Europe. Ecosphere 3:37. https://doi.org/10.1890/ES14-00353.1

    Article  Google Scholar 

  • Anglade, Billen, Garnier (2017) Reconquérir la qualité de l’eau en régions de grande culture : agriculture biologique et reconnexion avec l’élevage. Fourrages (in press)

  • Arnold JG, Allen PM, Muttiah R, Bernhardt G (1995) Automated base flow separation and recession analysis techniques. Ground Water 33:1010–1018

    Article  Google Scholar 

  • Arnold JG, Srinivasan R, Muttiah RS, Allen PM, Walker C (1999) Continental scale simulation of the hydrologic balance. J Am Water Resour Assoc 35:1037–1052

    Article  Google Scholar 

  • Benoit M, Garnier J, Billen G (2014) Nitrous oxide production from nitrification and denitrification in agricultural soils: determination of temperature relationships in batch experiments. Process Biochem. https://doi.org/10.1016/j.procbio.2014.10.013

    Google Scholar 

  • Berthier L, Bardy M, Chenu JP, Guzmova L, Laroche B, Lehmann S, Lemercier B, Martin M, Mérot P, Squividant H, Thiry E, Walter C (2014) Enveloppes des milieux potentiellement humides de la France métropolitaine. Notice d’accompagnement. Programme de modélisation des milieux potentiellement humides de France, Ministère d’Ecologie, du Développement Durable et de l’Energie. http://geowww.agrocampus-ouest.fr/web/?p=1538

  • Beven KJ, Kirby MJ (1979) A physically based, variable contributing area model of basin hydrology. Hydrol Sci Bull 24:43–69

    Article  Google Scholar 

  • Billen G et al (2011). Nitrogen flows from European watersheds to coastal marine waters. In: Sutton M, Howard C et al (eds) The European Nitrogen Assessment. Cambridge University Press, Chapter 16, pp 379–404

  • Billen G, Garnier J (2000) Nitrogen transfer through the Seine drainage network: a budget based on the application of the RIVERSTRAHLER Model. Hydrobiologia 410:139–150

    Article  Google Scholar 

  • Billen G, Garnier J (2007) River basin nutrient delivery to the coastal sea: assessing its potential to sustain new production of non-siliceous algae. Mar Chem 106:148–160

    Article  Google Scholar 

  • Billen G, Garnier J, Hanset P (1994) Modelling phytoplankton development in whole drainage networks: the RIVERSTRAHLER model applied to the Seine river system. Hydrobiologia 289:119–137

    Article  Google Scholar 

  • Billen G, Garnier J, Rousseau V (2005) Nutrient fluxes and water quality in the drainage network of the Scheldt basin over the last 50 years. Hydrobiologia 540:47–67

    Article  Google Scholar 

  • Billen G, Beusen A, Bouwman L, Garnier J (2010) Anthropogenic nitrogen autotrophy and heterotrophy of the world’s watersheds: past, present, and future trends. Glob Biogeochem Cycles. https://doi.org/10.1029/2009gb003702

    Google Scholar 

  • Billen G, Garnier J, Lassaletta L (2013) The nitrogen cascade from agricultural soils to the sea: modelling N transfers at regional watershed and global scales. Philos Trans R Soc B 2013(368):20130123. https://doi.org/10.1098/rstb.2013.0123

    Article  Google Scholar 

  • Burt TP, Matchett LS, Goulding KWT, Webster CP, Haycock NE (1999) Denitrification in riparian buffer zones: the role of floodplain hydrology. Hydrol Process 13:1451–1463

    Article  Google Scholar 

  • Camargo JA, Alonso A, Salamanca A (2005) Nitrate toxicity to aquatic animals: a review with new data for freshwater invertebrates. Chemosphere 58:1255–1267

    Article  Google Scholar 

  • Cey E, Rudolph DL, Aravena R, Parkin G (1998) Role of the riparian zone in controlling the distribution and fate of agricultural nitrogen near a small stream in southern Ontario. J Contam Hydrol 37:45–67

    Article  Google Scholar 

  • Channan S, Collins K, Emanuel WR (2014) Global mosaics of the standard MODIS land cover type data. University of Maryland and the Pacific Northwest National Laboratory, College Park

    Google Scholar 

  • Clément JC, Pinay G, Marmonier P (2002) Seasonal dynamics of denitrification along topohydrosequences in three different riparian wetlands. J Environ Qual 31:1025–1037

    Article  Google Scholar 

  • Cosandey AC, Gueneta C, Bouzelboudjen M, Maître V, Bovier R (2003) The modelling of soil-process functional unitsbased on three-dimensional soil horizon cartography, with an example of denitrification in a riparian zone. Geoderma 112:111–129

    Article  Google Scholar 

  • Curie F, Gaillard S, Ducharne A, Bendjoudi H (2007) Geomorphological methods to characterizes wetlands at the scale of the Seine watershed. Sci Total Environ 375:59–68

    Article  Google Scholar 

  • Czuba JA, Hansen AT, Foufoula-Georgiou E, Finlay JC (2018) Contextualizing wetlands within a river network to assess nitrate removal and inform watershed management. Water Resour Res 54:1312–1337. https://doi.org/10.1002/2017WR021859

    Article  Google Scholar 

  • Devito KJ, Fitzgerald D, Hill AR, Aravena R (2000) Nitrate dynamics in relation to lithology and hydrologic flow path in a river riparian zone. J Environ Qual 29:1075–1084

    Article  Google Scholar 

  • Dhondt K, Boeckx P, Hofman G, Van Cleemput O (2004) Temporal and spatial patterns of denitrification enzyme activity and nitrous oxide fluxes in three adjacent vegetated riparian buffer zones. Biol Fertil Soils 40:243–251

    Article  Google Scholar 

  • Dupas R, Curie F, Gascuel-Odoux C, Moatar F, Delmas M, Parnaudeau V, Durand P (2013) Assessing N emissions in surface water at the national level: comparison of country-wide vs. regionalized models. Sci Total Environ 443:152–162

    Article  Google Scholar 

  • Dupas R, Delmas M, Dorioz JM, Garnier J, Moatar F, Gascuel-Odoux C (2015) Assessing the impact of agricultural pressures on N and P loads and eutrophication risk. Ecol Ind 48:396–407. https://doi.org/10.1016/j.ecolind.2014.08.007

    Article  Google Scholar 

  • Duretz S, Drouet JL, Durand P, Hutchings NJ, Theobald MR, Salmon-Monviola J, Dragostis U, Maury O, Sutton MA, Cellier P (2011) NitroScape: a model to integrate nitrogen transfers and transformations in rural landscapes. Environ Pollut 159:3162–3170

    Article  Google Scholar 

  • Eckardt K (2005) How to construct recursive digital filters for baseflow separation. Hydrol Process 19:507–515

    Article  Google Scholar 

  • Eckhardt K (2008) A comparison of baseflow indices, which were calculated with seven different baseflow separation methods. J Hydrol 352:168–173

    Article  Google Scholar 

  • Florinsky IV, McMahon S, Burton DL (2004) Topographic control of soil microbial activity: a case study of denitrifiers. Geoderma 119:33–53

    Article  Google Scholar 

  • Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RH, Cowling EB, Cosby BJ (2003) The nitrogen cascade. Bioscience 53:341–356

    Article  Google Scholar 

  • Garnier J, Billen G, Hannon E, Fonbonne S, Videnina Y, Soulie M (2002) Modeling transfer and retention of nutrients in the drainage network of the Danube River. Estuar Coast Shelf Sci 54:285–308

    Article  Google Scholar 

  • Garnier J, Sferratore A, Meybeck M, Billen G, Dürr H (2006) Modeling silicon transfer processes in river catchments. In: V Ittekot, D Unger, C Humborg, NT An (eds) The silicon cycle, human perturbations and impacts on aquatic system. SCOPE 66, Island Press, pp 139–162

  • Garnier J, Billen G, Vilain G, Benoit M, Passy P, Tallec G, Tournebize J, Anglade J, Billy C, Mercier B, Ansart P, Azougui A, Sebilo M, Kao C (2014) Curative vs. preventive management of nitrogen transfers in rural areas: lessons from the case of the Orgeval watershed (Seine River basin, France). J Environ Manag 144:125–134

    Article  Google Scholar 

  • Garnier J, Ramarson A, Thieu V, Némery J, Théry S, Billen G, Coynel A (2018) How can water quality be improved when the urban waste water directive has been fulfilled? A case study of the Lot river (France). Environ Sci Pollut Res. https://doi.org/10.1007/s11356-018-1428-1

    Google Scholar 

  • Grizzetti B et al. (2011) Nitrogen as a threat to European water quality. In: Sutton M, Howard C et al (eds) The european nitrogen assessment. Cambridge University Press, Cambridge, Chapter 16, pp 379–404

  • Grizzetti B, Bouraoui F (2006) Assessment of Nitrogen and Phosphorus Environmental Pressure at European Scale. European Commission, Joint Research Center, Institute for Environment and Sustainability. Rural, Water and ecosystem Resourcess Unit EUR 22526 EN

  • Grizzetti B, Bouraoui F, de Marsily G, Bidoglio G (2005) A statistical approach to estimate nitrogen sectorial contribution to total load. Water Sci Technol 51:83–90

    Article  Google Scholar 

  • Grizzetti B, Passy P, Billen G, Bouraoui F, Garnier J, Lassaletta L (2015) The role of water nitrogen retention in integrated nutrient management: assessment in a large basin using different modelling approaches. Environ Res Lett 10:065008. https://doi.org/10.1088/1748-326/10/6/065008

    Article  Google Scholar 

  • Groffman PM, Butterbach-Bahl K, Fulweiler RW, Gold AJ, Morse JL, Stander EK, Tague C, Tonitto C, Vidon P (2009) Challenges to incorporating spatially and temporally explicit phenomena (hotspots and hot moments) in denitrification models. Biogeochemistry 93:49–77. https://doi.org/10.1007/s10533-008-9277-5

    Article  Google Scholar 

  • Haag D, Kaupenjohann M (2001) Fate of nitrate fluxes and emissions in Central Europe: a critical review of concepts, data, and models for transport and retention. Agric Ecosyst Environ 86:1–21

    Article  Google Scholar 

  • Hansen AT, Dolph CL, Foufoula-Georgiou E, Finlay JC (2018) Contribution of wetlands to nitrate removal at the watershed scale. Nat Geosci 11:127–132. https://doi.org/10.1038/s41561-017-0056-6

    Article  Google Scholar 

  • Hénault C, Germon JC (2000) NEMIS: a predictive model of denitrification on the field scale. Eur J Soil Sci 51:257–270

    Article  Google Scholar 

  • Hénault C, Chéneby D, Heurlier K et al (2001) Laboratory kinetics of soil denitrification are useful to discriminate soils with potentially high levels of N2O emission on the field scale. Agronomie 21:713–723

    Article  Google Scholar 

  • Hénault C, Bizouart F, Laville P, Gabrielle B, Nicoullaud B, Germon JC, Cellier P (2005) Predicting in situ soil N2O emission using NOE algorithm and soil database. Glob Change Biol 2005(11):115–127

    Article  Google Scholar 

  • Hill AR, Devito KJ, Campagnolo S, Sanmugadas K (2000) Subsurface denitrification in a forest riparian zone: interactions between hydrology and supplies of nitrate and organic carbon. Biogeochemistry 51:193–223

    Article  Google Scholar 

  • Howarth RW, Billen G, Swaney D, Townsend A, Jaworski N, Lajtha K, Downing JA, Elmgren R, Caraco N, Jordan T, Berendse F, Freney J, Kudeyarov V, Murdoch P, Zhao-Liang Z (1996) Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic ocean: natural and human influences. Biogeochemistry 35:75–139

    Article  Google Scholar 

  • Howarth RW, Boyer EW, Marino R, Swaney D, Jaworski N, Goodale C (2006) The influence of climate on average nitrogen export from large watersheds in the northeastern United States. Biogeochemistry 79:163–186

    Article  Google Scholar 

  • James C, Fisher J, Russel V, Collings S, Moss B (2005) Nitrate availability and hydrophyte species richness in shallow lakes. Freshw Biol 50:1049–1063. https://doi.org/10.1111/j.1365-2427.2005.01375.x

    Article  Google Scholar 

  • Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled SRTM for the globe Version 4, CGIAR-CSI SRTM 90 m Database, http://srtm.csi.cgiar.org

  • Knowles R (1982) Denitrification. Microbiol Rev 46(1):43

    Google Scholar 

  • Laverman AM, Garnier J, Mounier E, Roose-Amsaleg C (2010) Nitrous oxide production kinetics during nitrate reduction in river sediments: the effect of nitrate and carbon. Water Res 44:1753–1764

    Article  Google Scholar 

  • Le Noë J, Billen G, Garnier J (2017) How the structure of agro-food systems shapes nitrogen, phosphorus, and carbon fluxes: the generalized representation of agro-food system applied at the regional scale in France. Sci Tot Environ 586:42–55

    Article  Google Scholar 

  • Le TPQ, Billen G, Garnier J, Théry S, Ruelland D, Nguyem XA, Chau VM (2010) Modelling nutrient transfer in the sub-tropical Red River system (China and Vietnam): implementation of the Seneque/Riverstrahler model. J Asian Earth Sci 37:259–274

    Article  Google Scholar 

  • Le TPQ, Billen G, Garnier J, Van Chau M (2014) Long-term evolution of the biogeochemical functioning of the Red River (Vietnam): past and present situations. Region Environ Change. https://doi.org/10.1007/s10113-014-0646-4

    Google Scholar 

  • Liu W, Xionga Z, Liu H, Zhang Q, Liu G (2015) Catchment agriculture and local environment affecting the soil denitrification potential and nitrous oxide, production of riparian zones in the Han River Basin, China. Agric Ecosyst Environ 216:147–154

    Article  Google Scholar 

  • Merot P, Ezzahar B, Walter C, Aurousseau P (1995) Mapping waterlogging of soils using digital terrain models. Hydrol Process 9:27–34

    Article  Google Scholar 

  • Meybeck M, de Marsily G, Fustec E (eds) (1998) La Seine en son bassin. Fonctionnement écologique d’un système fluvial anthropisé. Elsevier, Paris, p 749

    Google Scholar 

  • Moatar F, Dupont N (2016) La Loire fluviale et estuarienne: un milieu en évolution. Collection synthèses. Quae, Paris

    Google Scholar 

  • Moreau P, Ruiz L, Vertès F, Baratte C, Delaby L, Faverdin P, Gascuel-Odoux C, Piquemal B, Ramat E, Salmon-Monviola J, Durand P (2013) CASIMOD’N: an agro-hydrological distributed model of catchment-scale nitrogen dynamics integrating farming system decisions. Agric Syst 118:41–51

    Article  Google Scholar 

  • Murray RE, Parsons LL, Smith MS (1989) Kinetics of nitrate utilization by mixed populations of denitrifying bacteria. Appl Environ Microbiol 1989:717–721

    Google Scholar 

  • Neitsch SL, Arnold JG, Kiniry JR, Williams JR (2005) SWAT theoretical documentation. www.bcr.tamus.edu/swat/

  • Oehler F, Bordenave P, Durand P (2007) Variations of denitrification in a farming catchment area. Agric Ecosyst Environ 120(2–4):313–324

    Article  Google Scholar 

  • Oehler F, Durand P, Bordenave P, Saadi Z, Salmon-Monviola J (2008) Modelling denitrification at the catchment scale. Sci Total Environ 407:1726–1737

    Article  Google Scholar 

  • Oehler F, Durand P, Bordenave P, Saadi Z, Salmon-Monviola J (2009) Modelling denitrification at the catchment scale. Sci Total Environ 407:1726–1737

    Article  Google Scholar 

  • Passy P, Garnier J, Billen G, Fesneau C, Tournebize J (2012) Restoration of ponds in rural landscapes: modelling the effect on nitrate contamination of surface water (the Seine watershed, France). Sci Total Environ 430:280–290

    Article  Google Scholar 

  • Passy P, Gypens N, Billen G, Garnier J, Thieu V, Rousseau V, Callens J, Parent J-Y, Lancelot C (2013) A model reconstruction of riverine nutrient fluxes and eutrophication in the Belgian Coastal Zone since 1984. J Mar Syst 128:106–122. https://doi.org/10.1016/j.jmarsys.2013.05.005

    Article  Google Scholar 

  • Pell M, Stenberg B, Stenström J, Tortensson L (1996) Potential denitrification activity assay in soil with or without chloramphenicol? Soil Biol Biochem 28:393–398

    Article  Google Scholar 

  • Pinay G, Black VJ, Planty-Tabacchi AM, Gumiero B, Décamps H (2000) Geomorphic control of denitrification in large river floodplain soils. Biogeochemistry 50:163–182

    Article  Google Scholar 

  • Puech T, Schott C, Mignolet C, Viennot P, Gallois N (2014) Actualisation de la base de données agricoles sur le bassin Seine-Normandie pour l’analyse de l’évolution récente des pratiques agricoles. Quelle Agriculture Pour Demain?, Rapport PIREN-Seine Phase 6, pp. 1–13. www.piren-seine.fr/sites/default/files/PIRENdocuments/

  • Ranalli AJ, Macalady DL (2010) The importance of the riparian zone and in-stream processes in nitrate attenuation in undisturbed and agricultural watersheds—a review of the scientific literature. J Hydrol 389:406–415

    Article  Google Scholar 

  • Rivett MO, Buss SR, Morgan P, Smith JWN, Bemment CD (2008) Nitrate attenuation in groundwater: a review of biogeochemical controlling processes. Water Res 42:4215–4232

    Article  Google Scholar 

  • Ruelland D, Billen G, Brunstein D, Garnier J (2007) SENEQUE: a multi-scaled GIS interface to the RIVERSTRAHLER model of the biogeochemical functioning of river systems. Sci Total Environ 375:257–273

    Article  Google Scholar 

  • Salmon-Monviola J, Durand P, Ferchaud F, Oehler F, Sorel L (2012) Modelling spatial dynamics of cropping systems to assess agricultural practices at the catchment scale. Comput Electron Agric 81:1–13

    Article  Google Scholar 

  • Sebilo M, Billen G, Grably M, Mariotti A (2003) Isotopic composition of nitrate-nitrogen as a marker of riparian and benthic denitrification at the scale of the whole Seine River system. Biogeochemistry 63:35–51

    Article  Google Scholar 

  • Sferratore A, Billen G, Garnier J, Smedberg E, Humborg C, Rahm L (2008) Modelling nutrient fluxes from sub-arctic basins: comparison of pristine vs. dammed rivers. J Mar Syst 73:236–249

    Article  Google Scholar 

  • Simek M, Cooper JE, Picek T, Santruckova H (2000) Denitrification in arable soils in relation to their physico-chemical properties and fertilization practice. Soil Biol Biochem 32:101–110

    Article  Google Scholar 

  • Stanford G, Dzienia S, Vander Pol RA (1975) Effect of temperature on denitrification rate in soils. Soil Sci Soc Am J 39:867–870

    Article  Google Scholar 

  • Sun X, Bernard-Jannin L, Garneau C, Volk M, Arnold G, Srinivasan R, Sauvage S, Sánchez-Pérez JM (2016) Improved simulation of river water and groundwater exchange in an alluvial plain using the SWAT model. Hydrol Process 30:187–202. https://doi.org/10.1002/hyp.10575

    Article  Google Scholar 

  • Sutton-Grier AE, Kenney MA, Richardson CJ (2010) Examining the relationship between ecosystem structure and function using structural equation modelling: a case study examining denitrification potential in restored wetland soils. Ecol Model 221:761–768

    Article  Google Scholar 

  • Thieu V, Billen G, Garnier J (2009) Nutrient transfer in three contrasting NW European watersheds: The Seine, Somme, and Scheldt Rivers. A comparative application of the Seneque/Riverstrahler model. Water Res 43:1740–1754

    Article  Google Scholar 

  • Tiedje JM, Sexstone AJ, Myrold DD, Robinson JA (1982) Denitrification: ecological niches, competition and survival. Antonie van Leeuwenhoek J. Microbiol. 48:569–583

    Article  Google Scholar 

  • Ullah S, Faulkner SP (2006) Denitrification potential of different land-use types in an agricultural watershed, lower Mississippi valley. Ecol Eng 28:131–140

    Article  Google Scholar 

  • Vidon GF, Hill AR (2004) Landscape controls on nitrate removal in stream riparian zones. Water Res 40:WO3201. https://doi.org/10.1029/2003wr002473

  • Vidon GF, Hill AR (2006) A landscape-based approach to estimate riparian hydrological and nitrate removal functions. J Am Water Resour Assoc 2006:1099–1111

    Article  Google Scholar 

  • Vilain G, Garnier J, Roose-Amsaleg C, Laville P (2012) Potential of denitrification and nitrous oxide production from agricultural soil profiles (Seine Basin, France). Nutr Cycl Agroecosyst 92:35–50

    Article  Google Scholar 

  • Vilain G, Garnier J, Decuq C, Lugnot M (2014) Nitrous oxide production from soil experiments: denitrification prevails over nitrification. Nutr Cycl Agro-ecosystems 47:6–13

    Google Scholar 

  • Weller DE, Baker ME, Jordan TE (2011) Effects of riparian buffers on nitrate concentrations in watershed discharges: new models and management implications. Ecol Appl 21:1679–1695

    Article  Google Scholar 

  • WHO (2007) Public water supply and access to improved water sources. World Heatlth Organization, Geneva

    Google Scholar 

  • Willems HPL, Rotelli MD, Berry DF, Smith EP, Reneau RB, Mostaghimi S (1997) Nitrate removal in riparian wetland soils: effects of flow rate, temperature, nitrate concentration and soil depth. Water Res 31:841–849

    Article  Google Scholar 

  • Wollheim WM, Harms TK, Peterson BJ, Morkeski K, Hopkinson CS, Stewart RJ, Gooseff MN, Briggs MA (2014) Nitrate uptake dynamics of surface transient storage in stream channels and fluvial wetlands. Biogeochemistry 120(1–3):239–257. https://doi.org/10.1007/s10533-014-9993-y

    Article  Google Scholar 

  • Wu X, Liu G, Butterbach-Bahl K, Fu B, Zheng X, Brüggemann N (2013) Effects of land cover and soil properties on denitrification potential in soils of two semi-arid grasslands in Inner Mongolia, China. J Arid Environ 92:98–101

    Article  Google Scholar 

Download references

Acknowledgements

The study was conducted within the framework of several scientific projects, Escapade and HydroGES supported by the National Agency for Research (ANR) and the Agency for the Environment and Mastery of Energy (ADEME), respectively. The PIREN-Seine programme and the Fédération Ile-de-France de Recherche pour l’Environnement (FIRE) are also acknowledged for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Billen.

Additional information

Responsible Editor: Jacques C. Finlay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Billen, G., Ramarson, A., Thieu, V. et al. Nitrate retention at the river–watershed interface: a new conceptual modeling approach. Biogeochemistry 139, 31–51 (2018). https://doi.org/10.1007/s10533-018-0455-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-018-0455-9

Keywords

Navigation