Skip to main content

Advertisement

Log in

Reducing the risk of foaming and decreasing viscosity by two-stage anaerobic digestion of sugar beet pressed pulp

  • Original Article
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Anaerobic digestion (AD) of sugar beet pressed pulp (SBPP) is a promising treatment concept. It produces biogas as a renewable energy source making sugar production more energy efficient and it turns SBPP from a residue into a valuable resource. In this study one- and two-stage mono fermentation at mesophilic conditions in a continuous stirred tank reactor were compared. Also the optimal incubation temperature for the pre-acidification stage was studied. The fastest pre-acidification, with a hydraulic retention time (HRT) of 4 days, occurred at a temperature of 55 °C. In the methanogenic reactor of the two-stage system stable fermentation at loading rate of 7 kg VS/m³ d was demonstrated. No artificial pH adjustment was necessary to maintain optimum levels in both the pre-acidification and the methanogenic reactor. The total HRT of the two-stage AD was 36 days which is considerably lower compared to the one-stage AD (50 days). The frequently observed problem of foaming at high loading rates was less severe in the two-stage reactor. Moreover the viscosity of digestate in the methanogenic stage of the two-stage fermentation was in average tenfold lower than in the one-stage fermentation. This decreases the energy input for the reactor stirring about 80 %. The observed advantages make the two-stage process economically attractive, despite higher investments for a two reactor system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alkaya E, Demirer GN (2011) Anaerobic acidification of sugar-beet processing wastes: effect of operational parameters. Biomass Bioenergy 35:32–39

    Article  CAS  Google Scholar 

  • American Public Health Association (APHA), American Water Works Association (AWWA), Water Environment Federation (1999) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington DC, USA

  • BeMiller JN, Fishman ML, Jen JJ (1986) An introduction to pectins: structure and properties. In: Chemistry and function of pectins, ACS symposium series. American Chemichal Society, Washington DC, pp 2–12

  • Braun R (1982) Biogas—Methangärung organischer Abfallstoffe : Grundlagen u. Anwendungsbeispiele. Springer Wien, New York

  • Brooks L, Parravicini V, Svardal K, Kroiss H, Prendl L (2008) Biogas from sugar beet press pulp as substitute of fossil fuel in sugar beet factories. Water Sci Technol 58:1497–1504

    Article  CAS  PubMed  Google Scholar 

  • CEFS (2011) CEFS Sugar Statistics Inquiry 2011, www.comitesucre.org. Assessed 27 Jan 2013

  • Cooney M, Maynard N, Cannizzaro C, Benemann J (2007) Two-phase anaerobic digestion for production of hydrogen–methane mixtures. Bioresour Technol 98:2641–2651

    Article  CAS  PubMed  Google Scholar 

  • Coughlan MP, Considine PJ, O`Rorke A, Puls J (1985) Saccharification of agricultural residues by combined cellulolytic and pectinolytic enzyme systems. Biotechnol Bioeng Symp 15:447–458

    Google Scholar 

  • Demirel B, Yenigün O (2002) Two-phase anaerobic digestion processes: a review. J Chem Technol Biotechnol 77:743–755

    Article  CAS  Google Scholar 

  • Döhler H, Eckel H, Fröba N, Grebe S, Hartmann S, Häussermann U, Klages S, Sauer N, Nakazi S, Nienbum A, Roth U, Wirth B, Wulf S (2009) Faustzahlen Biogas, 2nd edn. KTBL Kuratorium für Technik und Bauwesen in der Landwirtschaft e. V, Darmstadt

    Google Scholar 

  • FAO (2010) FAOSTAT database, www.fao.org. Assessed 27 Jan 2013

  • Ganidi N, Tyrrel S, Cartmell E (2009) Anaerobic digestion foaming causes-a review. Bioresour Technol 100:5546–5554

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Klass DL (1978) Two-phase anaerobic digestion. Process Biochem 13:15–24

    CAS  Google Scholar 

  • Grajek W (1988) Production of protein by thermophilic fungi from sugar-beet pulp in solid-state fermentation. Biotechnol Bioeng 32:255–260

    Article  CAS  PubMed  Google Scholar 

  • Günzler H, Gremlich H-U (2002) IR Spectroscopy, an introduction, 1. Wiley-VCH, Weinheim

    Google Scholar 

  • Hutnan M, Drtil M, Mrafkova L (2000) Anaerobic biodegradation of sugar beet pulp. Biodegradation 11:203–211

    Article  CAS  PubMed  Google Scholar 

  • Hutnan M, Drtil M, Derco J, Mrafkova L, Hornak M, Mico S (2001) Two-step pilot-scale anaerobic treatment of sugar beet pulp. Pol J Environ Stud 10:237–243

    CAS  Google Scholar 

  • Kamnev AA, Colina M, Rodriguez NM, Ptitchkina NM, Ignatov VV (1998) Comparative spectroscopic characterization of different pectins and their sources. Food Hydrocoll 12:263–271

    Article  Google Scholar 

  • Kampmann K, Ratering S, Baumann R, Schmidt M, Zerr W, Schnell S (2012) Hydrogenotrophic methanogens dominate in biogas reactors fed with defined substrates. Syst Appl Microbiol 35:404–413

    Article  CAS  PubMed  Google Scholar 

  • Krakat N, Schmidt S, Scherer P (2011) Potential impact of process parameters upon the bacterial diversity in the mesophilic anaerobic digestion of beet silage. Bioresour Technol 102:5692–5701

    Article  CAS  PubMed  Google Scholar 

  • Kraume M (2006) Mischen und Rühren, 2nd edn. John Wiley & Sons, Weinheim

    Google Scholar 

  • Lier JBV, Grolle KC, Frijters CT, Stams AJ, Lettinga G (1993) Effects of acetate, propionate, and butyrate on the thermophilic anaerobic degradation of propionate by methanogenic sludge and defined cultures. Appl Environ Microbiol 59:1003–1011

    PubMed Central  PubMed  Google Scholar 

  • Mah RA (1977) Acetate, a key intermediate in methanogenesis. In: Microbial energy conversion. Pergamon Press, Oxford, pp 97–106

  • Micard V, Renard CMGC, Thibault J-F (1996) Enzymatic saccharification of sugar-beet pulp. Enzym Microb Technol 19:162–170

    Article  CAS  Google Scholar 

  • Mularczyk-Oliwa M, Bombalska A, Kaliszewski M, Włodarski M, Kopczyński K, Kwaśny M, Szpakowska M, Trafny EA (2012) Comparison of fluorescence spectroscopy and FTIR in differentiation of plant pollens. Spectrochim Acta A Mol Biomol Spectrosc 97:246–254

    Article  CAS  PubMed  Google Scholar 

  • Ozkan L, Erguder TH, Demirer GN (2011) Effects of pretreatment methods on solubilization of beet-pulp and bio-hydrogen production yield. Int J Hydrogen Energy 36:382–389

    Article  CAS  Google Scholar 

  • Phatak L, Chang KC, Brown G (1988) Isolation and characterization of pectin in sugar-beet pulp. J Food Sci 53:830–833

    Article  CAS  Google Scholar 

  • Pohn S, Kamarad L, Kirchmayr R, Harasek M (2010) Design, calibration and numerical investigation of a macro viscosimeter. In: Proceedings presented at the 19th International Congress of Chemical and Process Engineering CHISA 2010, Prague, Czech Republic

  • Pose S, Kirby AR, Mercado JA, Morris VJ, Quesada MA (2012) Structural characterization of cell wall pectin fractions in ripe strawberry fruits using AFM. Carbohydr Polym 88:882–890

    Article  CAS  Google Scholar 

  • Scherer P, Lehmann K, Schmidt O, Demirel B (2009) Application of a fuzzy logic control system for continuous anaerobic digestion of low buffered, acidic energy crops as mono-substrate. Biotechnol Bioeng 102:736–748

    Article  CAS  PubMed  Google Scholar 

  • Sinitsya A, Čopíková J, Prutyanov V, Skoblya S, Machovič V (2000) Amidation of highly methoxylated citrus pectin with primary amines. Carbohydr Polym 42:359–368

    Article  CAS  Google Scholar 

  • Spagnuolo M, Crecchio C, Pizzigallo MDR, Ruggiero P (1997) Synergistic effects of cellulolytic and pectinolytic enzymes in degrading sugar beet pulp. Bioresour Technol 60:215–222

    Article  CAS  Google Scholar 

  • Stuart B (2000) Infrared Spectroscopy. In: Kirk-Othmer encyclopedia of chemical technology. John Wiley & Sons, Inc

  • Toğrul H, Arslan N (2003) Flow properties of sugar beet pulp cellulose and intrinsic viscosity–molecular weight relationship. Carbohydr Polym 54:63–71

    Article  Google Scholar 

  • Wang Y, Zhang Y, Wang J, Meng L (2009) Effects of volatile fatty acid concentrations on methane yield and methanogenic bacteria. Biomass Bioenergy 33:848–853

    Article  CAS  Google Scholar 

  • Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85:849–860

    Article  CAS  PubMed  Google Scholar 

  • Wen LF, Chang KC, Brown G, Gallaher DD (1988) Isolation and characterization of hemicellulose and cellulose from sugar beet pulp. J Food Sci 53:826–829

    Article  CAS  Google Scholar 

  • Zuru AA, Dangoggo SM, Birnin-Yauri UA, Tambuwal AD (2004) Adoption of thermogravimetric kinetic models for kinetic analysis of biogas production. Renew Energy 29:97–107

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this study was provided by K1 center Bioenergy 2020+, GmbH, Austria and AAT Abwasser- und Abfalltechnik GmbH, Austria. The authors are also grateful to Markus Pruckner and Ing. Marion Sumetzberger-Hasinger for their technical support in carrying out the analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elitza Stoyanova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoyanova, E., Forsthuber, B., Pohn, S. et al. Reducing the risk of foaming and decreasing viscosity by two-stage anaerobic digestion of sugar beet pressed pulp. Biodegradation 25, 277–289 (2014). https://doi.org/10.1007/s10532-013-9659-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-013-9659-9

Keywords

Navigation