Skip to main content

Advertisement

Log in

Assessing the performance of nonparametric estimators of species richness in meadows

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

To accurately measure the number of species in a biological community, a complete inventory should be performed, which is generally unfeasible; hopefully, estimators of species richness can help. Our main objectives were (i) to assess the performance of nonparametric estimators of plant species richness with real data from a small set of meadows located in the Basque campiña (northern Spain), and (ii) to apply the best estimator to a larger dataset to test the effects on plant species richness caused by environmental conditions and human practices. Two non-asymptotic and seven asymptotic accumulation functions were fitted to a randomized sample-based rarefaction curve computed with data from three well sampled meadows, and information theoretic methods were used to select the best fitting model; this was the Morgan-Mercer-Flodin, and its asymptote was taken as our best guess of true richness. Then, five nonparametric estimators were computed: ICE, Chao 2, Jackknife 1 and 2, and Bootstrap; MMRuns and MMMeans were also assessed. According to the criteria set for our performance assessment (i.e., bias, precision, and accuracy), the best estimator was Jackknife 1. Finally, Jackknife 1 was applied to assess the effects of terrain slope and soil parent material, and also fertilization, grazing, and mowing, on plant species richness from a larger dataset (20 meadows). Results suggested that grass cutting was causing a loss of richness close to 30%, as compared to unmowed meadows. It is concluded that the use of nonparametric estimators of species richness can improve the evaluation of biodiversity responses to human management practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aizpuru I, Aseginolaza C, Uribe-Echebarria PM et al (2000) Claves Ilustradas de la Flora del País Vasco y Territorios Limítrofes. Servicio de Publicaciones del Gobierno Vasco, Vitoria-Gasteiz

    Google Scholar 

  • Alberdi Collantes JC (2001) Reestructuración agraria y abandono de usos: el caserío vasco. Investigaciones Geográficas 26:135–150

    Google Scholar 

  • Anderson DR, Burnham KP, Thompson WL (2000) Null hypothesis testing: problems, prevalence, and an alternative. J Wildl Manage 64:912–923

    Article  Google Scholar 

  • Brose U (2002) Estimating species richness of pitfall catches by non-parametric estimators. Pedobiologia 46:101–107

    Article  Google Scholar 

  • Brose U, Martinez ND (2004) Estimating the richness of species with variate mobility. Oikos 105:292–300

    Article  Google Scholar 

  • Brower JE, Zar JH, von Ende CN (1997) Field and laboratory methods for general ecology. Mc Graw Hill, Boston

    Google Scholar 

  • Burnham KP, Anderson DR (2001) Kullback-Leibler information as a basis for strong inference in ecological studies. Wildl Res 28:111–119

    Article  Google Scholar 

  • Canals RM, Sebastià MT (2001) Perturbación y estructura espacial de pastizales montanos: un enfoque fractal. In: Sociedad Española para el Estudio de los Pastos (ed) Actas de la XLI Reunión Científica de la Sociedad Española para el Estudio de los Pastos - I Foro Latinoamericano de Pastos. Alicante, pp 209–215

  • Canning-Clode J, Valdivia N, Molis M, Thomason JC, Wahl M (2008) Estimation of regional richness in marine benthic communities: quantifying the error. Limnol Oceanogr Methods 6:580–590

    Google Scholar 

  • Cao Y, Larsen DP, White D (2004) Estimating regional species richness using a limited number of survey units. Ecoscience 11:23–35

    Google Scholar 

  • Chao A (2005) Species richness estimation. In: Balakrishnan N, Read CB, Vidakovic B (eds) Encyclopedia of statistical sciences. Wiley, New York, pp 7909–7916

    Google Scholar 

  • Chazdon RL, Colwell RK, Denslow JS, Guariguata MR (1998) Statistical methods for estimating species richness of woody regeneration in primary and secondary rain forests of Northeastern Costa Rica. In: Dallmeier F, Comiskey JA (eds) Forest biodiversity research, monitoring and modeling: conceptual background and old world case studies. The Parthenon Publishing Group, Paris, pp 285–309

    Google Scholar 

  • Chiarucci A, Palmer MA (2006) The inventory and estimation of plant species richness. In: El-Shaarawi AH, Jureckova J (eds) Encyclopedia of life support systems, developed under the auspices of the UNESCO. Encyclopedia of Life Support Systems Publishers, Oxford

    Google Scholar 

  • Clergue B, Amiaud B, Pervanchon F, Lasserre-Joulin F, Plantureux S (2005) Biodiversity: function and assessment in agricultural areas. A review. Agron Sustain Dev 25:1–15

    Article  Google Scholar 

  • Colwell RK (2006) EstimateS: statistical estimation of species richness and shared species from samples. Version 8. http://purl.oclc.org/estimates

  • Colwell RK, Coddington JA (1994) Estimating terrestrial biodiversity through extrapolation. Phil Trans R Soc Lond B 345:101–118

    Article  CAS  Google Scholar 

  • Colwell RK, Mao CX, Chang J (2004) Interpolating, extrapolating, and comparing incidence based species accumulation curves. Ecology 85:2717–2727

    Article  Google Scholar 

  • Dale VH, Beyeler SC (2001) Challenges in the development and use of ecological indicators. Ecol Indic 1:3–10

    Article  Google Scholar 

  • Díaz-Frances E, Soberón J (2005) Estatistical estimation and model selection of species-accumulation functions. Conserv Biol 19:569–573

    Article  Google Scholar 

  • Duelli P, Obrist MK (2003) Biodiversity indicators: the choice of values and measures. Agric Ecosyst Environ 98:87–98

    Article  Google Scholar 

  • European Environment Agency (2007) Europe’s environment. The fourth assessment. European Environment Agency, Copenhagen

    Google Scholar 

  • Ferrer C, Barrantes O, Broca A (2001) La noción de biodiversidad en los ecosistemas pascícolas españoles. Pastos XXXI:129–184

  • Flather CH (1996) Fitting species-accumulation functions and assessing regional land use impacts on avian diversity. J Biogeogr 23:155–168

    Article  Google Scholar 

  • González-Oreja JA, Artieda O, Onaindia M, Mendarte S, Garbisu C, Albizu I (2009) Relaciones entre los parámetros físico-químicos del suelo y la vegetación en prados de la Reserva de la Biosfera de Urdaibai (Bizkaia). In: Reiné R, Barrantes O, Broca A, Ferrer C (eds) La multifuncionalidad de los pastos: producción ganadera sostenible y gestión de los ecosistemas. Sociedad Española para el estudio de los pastos, Huesca, pp 53–59

    Google Scholar 

  • González-Oreja JA, Garbisu C, Mendarte S, Ibarra A, Albizu I (in press) Agroecosistemas y biodiversidad en la Reserva de la Biosfera de Urdaibai: diversidad florística de los prados. In: Cátedra UNESCO (ed) Guía Científica de la Reserva de la Biosfera de Urdaibai

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391

    Article  Google Scholar 

  • Gotelli NJ, Ellison AM (2004) A primer of ecological statistics. Sinauer, Massachusetts

    Google Scholar 

  • Hellmann JJ, Fowler GW (1999) Bias, precision, and accuracy of four measures of species richness. Ecol Appl 9:824–834

    Article  Google Scholar 

  • Henle K, Alard D, Clitherow J et al (2008) Identifying and managing the conflicts between agriculture and biodiversity conservation in Europe—a review. Agric Ecosyst Environ 124:60–71

    Article  Google Scholar 

  • Herzog SK, Kessler M, Cahill TM (2002) Estimating species richness of tropical bird communities from rapid assessment data. Auk 119:749–769

    Article  Google Scholar 

  • Hortal J, Borges PAV, Gaspar C (2006) Evaluating the performance of species richness estimators: sensitivity to sample grain size. J Anim Ecol 75:274–287

    Article  PubMed  Google Scholar 

  • Jiménez-Valverde A, Hortal J (2003) Las curvas de acumulación de especies y la necesidad de evaluar la calidad de los inventarios biológicos. Revista Ibérica de Aracnología 8:151–161

    Google Scholar 

  • Jiménez-Valverde A, Jiménez Mendoza S, Martín Cano J et al (2006) Comparing relative model fit of several species-accumulation functions to local Papilionoidea and Hesperioidea butterfly inventories of Mediterranean habitats. Biodivers Conserv 15:177–190

    Article  Google Scholar 

  • Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19:101–108

    Article  PubMed  Google Scholar 

  • Leitner W, Turner WR (2001) Measurement and analysis of biodiversity. In: Levin SA (ed) Encyclopedia of biodiversity, vol 4. Academic Press, Princeton, pp 123–144

    Google Scholar 

  • Longino JT, Coddington J, Colwell RK (2002) The ant fauna of a tropical rain forest: estimating species richness three different ways. Ecology 83:689–702

    Article  Google Scholar 

  • López-Gómez AM, Williams-Linera G (2006) Evaluación de métodos no paramétricos para la estimación de riqueza de especies de plantas leñosas en cafetales. Bol Soc Bot México 78:7–15

    Google Scholar 

  • Loya DT, Jules ES (2008) Use of species richness estimators improves evaluation of understory plant response to logging: a study of redwood forests. Plant Ecol 194:179–194

    Article  Google Scholar 

  • Magurran AE (2004) Measuring biological diversity. Blackwell, Malden

    Google Scholar 

  • Moreno CE, Halffter G (2000) Assessing the completeness of bat biodiversity inventories using species accumulation curves. J Appl Ecol 37:149–158

    Article  Google Scholar 

  • Norris K (2008) Agriculture and biodiversity conservation: opportunity knocks. Conserv Lett 1:2–11

    Article  Google Scholar 

  • O’Hara RB (2005) Species richness estimators: how many species can dance on the head of a pin? J Anim Ecol 74:375–386

    Article  Google Scholar 

  • Palmer MW (1991) Estimating species richness: the second-order jacknife reconsidered. Ecology 72:1512–1513

    Article  Google Scholar 

  • Rodríguez-Loinaz G, Amezaga Arregi I, San Sebastián M et al (2007) Análisis del paisaje de la Reserva de la Biosfera de Urdaibai. Forum de Sostenibilidad 1:59–69

    Google Scholar 

  • Sarkar S (2002) Defining “biodiversity”: assessing biodiversity. Monist 85:131–155

    Google Scholar 

  • Soberón J, Llorente J (1993) The use of species accumulation functions for the prediction of species richness. Conserv Biol 7:480–488

    Article  Google Scholar 

  • StatSoft (2004) STATISTICA (data analysis software system), version 7. www.statsoft.com

  • Thompson GG, Withers PC, Pianka ER, Thompson SA (2003) Assessing biodiversity with species accumulation curves; inventories of small reptiles by pit-trapping in Western Australia. Austral Ecol 28:361–383

    Article  Google Scholar 

  • Tjorve E (2003) Shapes and functions of species-area curves: a review of possible models. J Biogeogr 30:827–835

    Article  Google Scholar 

  • Walther BA, Martin J-L (2001) Species richness estimation of bird communities: how to control for sampling effort? Ibis 143:413–419

    Article  Google Scholar 

  • Walther BA, Moore JL (2005) The concepts of bias, precision, and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography 28:1–15

    Article  Google Scholar 

  • Williams MR (2008) Assessing diversity of diurnal Lepidoptera in habitat fragments: testing the efficiency of strip transects. Environ Entomol 37:1313–1322

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by the ‘Plan Nacional de I+D+i 2004–2007’, through the CGL2005-08046-C03-02/BOS Project. We sincerely thank José Antonio Elorrieta for his company and technical assistance during field work in Urdaibai and Robert K. Colwell for his help with the EstimateS software. Constructive comments and suggestions by two anonymous referees greatly improved a previous version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Antonio González-Oreja.

Appendix

Appendix

See Table 4.

Table 4 List of the 65 plant species found in the whole data set (200 quadrats), ordered by decreasing Importance Value (IV): IV = M × Q × MC (%). M is the relative frequency of the meadows where a species was present; Q is relative frequency of the quadrats in those meadows where a species was present, and MC (%) is the mean percent cover of every species in those quadrats where it was present

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Oreja, J.A., Garbisu, C., Mendarte, S. et al. Assessing the performance of nonparametric estimators of species richness in meadows. Biodivers Conserv 19, 1417–1436 (2010). https://doi.org/10.1007/s10531-009-9770-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-009-9770-8

Keywords

Navigation